References
- K. Lee, J. Neff, Produced Water: Environmental Risks and
Advances in Mitigation Technologies, Springer, New York, 2011.
- A. Motta, C. Borges, K. Esquerre, A. Kiperstok, Oil Produced
Water treatment for oil removal by an integration of coalescer
bed and microfiltration membrane processes, J. Membr.
Sci., 469 (2014) 371–378.
- B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Ultrafiltration
of stable oil-in-water emulsion by polysulfone membrane,
J. Membr. Sci., 325 (2008) 427–437.
- R.W. Baker, Membrane Technology and Applications, 2nd
ed., ISBN: 0-470-85445-6 (Eletrônico), John Wiley & Sons Inc.,
California, USA, 2004.
- J.C. Mierzwa, C.D. Vecitis, J. Carvalho, V. Arieta, M. Verlage,
Anion dopant effects on the structure and performance of
polyethersulfone membranes, J. Membr. Sci., 421–422 (2012)
91–102.
- M.V. Brami, Y. Oren, C. Linder, R. Bernstein, Nanofiltration
properties of asymmetric membranes prepared by phase
inversion of sulfonated nitro-polyphenylsulfone, Polymer, 111
(2017) 137–147.
- L.T. Duarte, C.C. Pereira, A.C. Habert, C.P. Borges, Polyurethane/polyethersulphone composite hollow fibers produced by
simultaneous spinning of two polymer solutions, J. Membr. Sci.,
311 (2008) 12–22.
- Y. Mansourpanah, S.S. Madaeni, A. Rahimpour, M. Adeli,
M.Y. Hashemi, M.R. Moradian, Fabrication new PESbased
mixed matrix nanocomposite membranes using
polycaprolactone modified carbon nanotubes as the additive:
Property changes and morphological studies, Desalination, 277
(2011) 171–177.
- J.J. Burgos-Mármol, A. Patti, Unveiling the impact of
nanoparticle size dispersity on the behavior of polymer
nanocomposites, Polymer, 113 (2017) 92–104.
- J.W. Cho, D.R. Paul, Nylon 6 nanocomposites by melt
compounding, Polymer, 42 (2001) 1083–1094.
- E.M. Araújo, R. Barbosa, A.W.B. Rodrigues, T.J.A. Melo,
E.N. Ito, Processing and characterization of polyethylene/Brazilian clay nanocomposites, Mater. Sci. Eng., A, 445–446
(2007) 141–147.
- C.Y. Liang, P. Uchytil, R. Petrychkovych, L.Y.C. AI, K. Friess,
M. Sipek, M.M. Reddy, S.Y. Suen, A comparison on gas
separation between PES (polyethersulfone)/MMT(Namontmorillonite)
and PES/TiO2 mixed matrix membranes, Sep.
Purif. Technol., 92 (2012) 57–63.
- Y. Yang, H. Zhang, P. Wang, Q. Zheng, J. Li, The influence of
nano-sized TiO2 fillers on the morphologies and properties of
PSF UF membranes, J. Membr. Sci., 288 (2007) 231–238.
- T. Uragami, H. Matsugi, T. Miyata, Pervaporation characteristics
of organic-inorganic hybrid membranes composed of poly(vinyl
alcohol-co-acrylic acid) and tetraethoxysilane for water/ethanol
separation, Macromolecules, 38 (2005) 8440–8446.
- R.K. Nagarale, V.K. Shahi, R. Rangarajan, Preparation of
polyvinyl alcohol-silica hybrid heterogeneous anion-exchange
membranes by sol-gel method and their characterization,
J. Membr. Sci., 248 (2005) 37–44.
- Y. Ya-nan, W. Jun, Z. Qing-Zhu, C. Xue-Si, Z. Hui-Xuan, The
research of rheology and thermodynamics of organic-inorganic
hybrid membrane during the membrane formation, J. Membr.
Sci., 311 (2008) 200–207.
- P.G. Ingole, W. Choi, K.H. Kim, H.D. Jo, W.K. Choi, J.S. Park,
H.K. Lee, Preparation, characterization and performance
evaluations of thin film composite hollow fiber membrane for
energy generation, Desalination, 345 (2014) 136–145.
- P.G. Ingole, W. Choi, K.H. Kim, C.H. Park, W.K. Choi, H.K. Lee,
Synthesis, characterization and surface modification of PES
hollow fiber membrane support with polydopamine and thin
film composite for energy generation, Chem. Eng. J., 243 (2014)
137–146.
- Z. Liu, Z. Mi, S. Jin, C. Wang, D. Wang, X. Zhao, H. Zhou,
C. Chen, The influence of sulfonated hyperbranched
polyethersulfone-modified halloysite nanotubes on
the compatibility and water separation performance of
polyethersulfone hybrid ultrafiltration membranes, J. Membr.
Sci., 557 (2018) 13–23.
- L.B. de Paiva, A.R. Morales, F.R. Valenzuela Díaz, Organoclays:
Properties, preparation and applications, Appl. Clay Sci., 42
(2008) 8–24.
- A.M.D. Leite, R.A. Paz, V.N. Medeiros, E.M. Araújo,
H.L. LIRA, T.J.A. Melo, The use of montmorillonite clay to
prepare nanocomposites and polymeric membrane, In: Justin
P. Humphrey and Daniel E. Boyd. (Org.), Clay: Types, Properties
and Uses, Nova York: Nova Publishres, 2011, pp. 391–406.
- V.N. Medeiros, T.C. Carvalho, A.M.D. Leite, E.M. Araujo,
H.L. Lira, Evaluation of the effect of clay in polyethersulfone
membranes, Desal. Water Treat, 56 (2015) 3554–3560.
- I. Cirne, J. Boaventura, Y. Guedes, E. Lucas, Methods for
determination of oil and grease contents in wastewater from
the petroleum industry, Chem. Chem. Technol., 10 (2016)
437–444.
- L.V. Amorim, C.M. Gomes, H. de L. Lira, K.B. França,
H.C. Ferreira, Bentonites from Boa Vista, Brazil: physical,
mineralogical and rheological properties, Mater. Res., 7 (2004)
583–593.
- A.P.M. Araújo, P. Agrawal, S.N. Cavalcanti, A.M. Alves,
G.F. Brito, T.J.A. Mélo, Bionanocomposite obtained from
poly(lactic acid)/biopolyethylene blend and clay, Macromol.
Symp., 343 (2014) 59–64.
- S.N. Cavalcanti, A.M. Alves, P. Agrawal, M.P. da Silva,
A.P.M. Araujo, E.M. Araujo, T.J.A. Melo, Effect of the content
of organophilic clays and impact modifier on the mechanical
properties of poly(lactic acid) PLA biocomposites, Macromol.
Symp., 367 (2016) 76–81.
- R. Barbosa, T.S. Alves, E.M. Araújo, T.J.A. Melo, G. Camino,
A. Fina, E.N. Ito, Flammability and morphology of HDPE/clay nanocomposites, J. Therm. Anal. Calorim., 115 (2014)
627–634.
- M. Giulio, R. Silvia, L. Nahal, P. Aldo, T.D. Nadka,
P.L.M. Francesco, Intercalation effects in LDPE/o-montmorillonites
nanocomposites, Eur. Polym. J., 43 (2007) 328–335.
- S. Hotta, R.P. Donald, Nanocomposites formed from linear
low density polyethylene and organoclays, Polymer., 45 (2004)
7639–7654.
- T. Li, L.S. Turng, S. Gong, K. Erlacher, Polylactide, nanoclay,
and core-shell rubber composites, Polym. Eng. Sci., 46 (2006)
1419–1427.
- K. Stoeffler, P.G. Lafleur, J. Denault, Thermal decomposition
of various alkyl onium organoclays: effect on polyethylene
terephtalate nanocomposites properties, Polym. Degrad. Stab.,
93 (2008) 1332–1350.
- D.W. Litchfield, D.G. Baird, P.B. Rim, C. Chen, Improved
mechanical properties of poly(ethylene terephthalate) nanocomposites
fibers, Polym. Eng. Sci., 50 (2010) 2205–2215.
- Y. Wang, B. Zhang, J. Ye, Microstructures and toughening
mechanisms of organoclay/polyethersulphone/epoxy hybrid
nanocomposites, Mater. Sci. Eng., A, 528 (2011) 7999–8005.
- N. Ghaemi, S.S. Madaeni, A. Alizadeh, H. Rajabi,
P. Daraei, Preparation, characterization and performance
of polyethersulfone/organically modified montmorillonite
nanocomposite membranes in removal of pesticides, J. Membr.
Sci., 382 (2011) 135–147.
- A. Salahi, T. Mohammadi, R.M. Behbahani, M. Hemmati,
Asymmetric polyethersulfone ultrafiltration membranes for
oily wastewater treatment: Synthesis, characterization, ANFIS
modeling, and performance, J. Environ. Chem. Eng., 3 (2015)
170–178.
- S. Zhzao, W. Yan, M. Shi, Z. Wang, J. Wang, S. Wang, Improving
permeability and antifouling performance of polyethersulfone
ultrafiltration membrane by incorporation of ZnO-DMF
dispersion containing nano-ZnO and polyvinylpyrrolidone,
J. Membr. Sci., 478 (2015) 105–116.
- G.R. Guillen, Y. Pan, M. Li, E.M.V. Hoek, Preparation and
characterization of membranes formed by nonsolvent induced
phase separation: a review, Ind. Eng. Chem. Res., 50 (2011)
3798–3817.
- H. Strathmann, K. Kock, P. Amar, R.W. Baker, Formation mechanism
of asymmetric membranes, Desalination, 16 (1975) 179.
- R.M. Boom, I.M. Wienk, T. Vandenboomgaard, C.A. Smolders,
Microstructures in phase inversion membranes. 2. The role of a
polymeric additive, J. Membr. Sci., 73 (1992) 277.
- C.A. Smolders, A.J. Reuvers, R.M. Boom, I.M. Wienk,
Microstructures in phase-inversion membranes. 1. Formation
of macrovoids, J. Membr. Sci., 73 (1992) 259.
- D. Kim, H. Vovusha, U. Schwingenschlögl, S.P. Nunes,
Polyethersulfone flat sheet and hollow fiber membranes from
solutions in ionic liquids, J. Membr. Sci., 539 (2017) 161–171.
- M. Liu, Y.M. Wei, Z.L. Xu, R.Q. Guo, L.B. Zhao, Preparation and
characterization of polyethersulfone microporous membrane
via thermally induced phase separation with low critical
solution temperature system, J. Membr. Sci., 437 (2013) 169–178.