References

  1. L. Wright, J. Heaney, S. Dent, C. Mosley, Optimization of Upstream and Downstream Controls for Sanitary Sewer Overflows, in: Urban Drain. Model., American Society of Civil Engineers, 2001: pp. 156–164. Available at: http://ascelibrary.org/doi/abs/10.1061/40583%28275%2916 (Accessed 30 August 2015).
  2. J.B. Golden, An introduction to sanitary sewer overflows, in: Office of Water, Washington, D.C., 1996.
  3. R. Field, T.P. O’Connor, Control strategy for storm-generated sanitary-sewer overflows, J. Environ. Eng. 123 (1997) 41–46.
  4. J.S. Jagai, S. DeFlorio-Barker, C.J. Lin, E.D. Hilborn, T.J. Wade, Sanitary sewer overflows and emergency room visits for gastrointestinal illness: analysis of Massachusetts data, 2006-2007, Environ. Health Perspect., 125 (2017) 117007.
  5. A. Rechenburg, C. Koch, T. Claßen, T. Kistemann, Impact of sewage treatment plants and combined sewer overflow basins on the microbiological quality of surface water, Water. Sci. Technol., 54 (2006) 95–99.
  6. R. Burrows, G.A. Ockleston, K.H.M. Ali, Flow estimation from flap-gate monitoring, Water. Environ. J., 11 (1997) 346–355.
  7. P. Kolsky, D. Butler, Performance indicators for urban storm drainage in developing countries, Urban Water., 4 (2002) 137–144.
  8. A. Campisano, J.C. Ple, D. Muschalla, M. Pleau, P.A. Vanrolleghem, Potential and limitations of modern equipment for real time control of urban wastewater systems, Urban. Water. J., 10 (2013) 300–311.
  9. G. Gruber, S. Winkler, A. Pressl, Continuous monitoring in sewer networks an approach for quantification of pollution loads from CSOs into surface water bodies, Water. Sci. Technol., 52 (2005) 215–223.
  10. T. Hofer, A. Montserrat, G. Gruber, V. Gamerith, L. Corominas, D. Muschalla, A robust and accurate surrogate method for monitoring the frequency and duration of combined sewer overflows, Environ. Monit. Assess., 190 (2018) 209.
  11. G. Leonhardt, S. Fach, C. Engelhard, H. Kinzel, W. Rauch, A software-based sensor for combined sewer overflows, Water. Sci. Technol., 66 (2012) 1475–1482.
  12. A. Montserrat, O. Gutierrez, M. Poch, L. Corominas, Field validation of a new low-cost method for determining occurrence and duration of combined sewer overflows, Sci. Total. Environ., 463–464 (2013) 904–912.
  13. O. Wani, A. Scheidegger, J.P. Carbajal, J. Rieckermann, F. Blumensaat, Parameter estimation of hydrologic models using a likelihood function for censored and binary observations, Water. Res., 121 (2017) 290–301.
  14. J.A. Replogle, B.T. Wahlin, Head loss characteristics of flap gates at the ends of drain pipes, Trans. Am. Soc. Agric. Eng., 46 (2003) 1077–1084.
  15. R. Wirahadikusumah, D.M. Abraham, T. Iseley, R.K. Prasanth, Assessment technologies for sewer system rehabilitation, Autom. Constr., 7 (1998) 259–270.
  16. S.B. Mitchell, E. Tinton, H. Burgess, Analysis of flows and water levels near tidal flap gate, Proc. Inst. Civ. Eng. Marit. Eng., 159 (2006) 107–112.
  17. R. Burrows, J. Emmonds, Energy head implications of the installation of circular flap gates on drainage outfalls, J. Hydraul. Res., 26 (1988) 131–142.
  18. P. Wu, J. Wang, Effects of sediment pressure on opening of hydraulic automatic control flap gate, Adv. Sci. Technol. Water. Resour., 34 (2014) 79–81.