References
- M.H. Gerardi, Settleability Problems and Loss Solids in the
Activated Sludge Process, John Wiley & Sons, Inc., New Jersey,
2002.
- C.P. Chu, D.J. Lee, Structural analysis of sludge flocs, Adv.
Powder Technol., 15 (2004) 515–532.
- B. Jin, B.-M. Wilén, P. Lant, A comprehensive insight into
floc characteristics and their impact on compressibility and
settleability of activated sludge, Chem. Eng. J., 95 (2003)
221–234.
- J. Wang, Q. Li, R. Qi, V. Tandoi, M. Yang, Sludge bulking
impact on relevant bacterial populations in full-scale municipal
wastewater treatment plant, Process Biochem., 49 (2014)
2258–2265.
- D. Jenkins, M.G. Richard, G.T. Daigger, Manual on the Causes
and Control of Activated Sludge Bulking, Foaming, and Other
Solids Separation Problems. 3rd ed., IWA Publishing, London,
2004.
- J. Guo, Y. Peng, S. Wang, X. Yang, Z. Yuan, Filamentous and
non-filamentous bulking of activated sludge encountered
under nutrients limitation or deficiency conditions, Chem. Eng.
J., 255 (2014) 435–461.
- M. Kida, A. Masłoń, J.A. Tomaszek, P. Koszelnik, The Possibilities
of Limitation and Elimination of Activated Sludge Bulking, In:
J.A. Tomaszek, P. Koszelnik, Eds., Progress in Environmental
Engineering, CRC Press, Balkema Taylor & Francis Group,
2015, pp. 35–49.
- M. Böhler, H. Siegrist, Partial ozonation of activated sludge
to reduce excess sludge, improve denitrification and control
scumming and bulking, Water Sci. Technol., 49 (2004) 41–49.
- M. Walczak, A. Cywińska, Application of selected chemical
compounds to limit the growth of filamentous bacteria in
activated sludge, Environ. Prot. Eng., 33 (2007) 221–230.
- V. Agridiotis, C.F. Forster, C. Carliell-Marquet, Addition of Al
and Fe salts during treatment of paper mill effluents to improve
activated sludge settlement characteristics, Biores. Technol., 98
(2007) 2926–2934.
- D. Mamais, E. Kalaitzi, A. Andreadakis, Foaming control in
activated sludge treatment plants by coagulants addition,
Global NEST J., 13 (2011) 237–245.
- A. Masłoń, J.A. Tomaszek, Effect of Chemical Coagulants
on the Sedimentation Properties of Activated Sludge, In: M.
Pawłowska, L. Pawłowski, Eds., Environmental Engineering V.
CRC Press, Taylor & Francis Group, London, 2017, pp. 109–114.
- D.F. Juang, Effects of synthetic polymer on the filamentous
bacteria in activated sludge, Biores. Technol., 96 (2005) 31–40.
- A. Masłoń, J.A. Tomaszek, I. Opaliński, Investigations to
improve the sedimentation properties of activated sludge by
using powder mineral materials, Gas Water Sanit. Eng., 12
(2013) 490–495.
- A. Masłoń, The impact of powder materials on improvement
of sedimentation properties of activated sludge, Instal, 4 (2015)
51–55.
- E. Fiałkowska, A. Pajdak-Stós, J. Fyda, W. Kocerba-Soroka, M.
Sobczyk, Lecane tenuiseta (Rotifera, Monogononta) as the best
biological tool candidate selected for preventing activated
sludge bulking in a cold season, Desal. Wat. Treat., 57 (2016)
28592–28599.
- A. Masłoń, I. Opaliński, Use of post-technological sludge
from water treatment to improve sedimentation properties of
activated sludge, Ann. Set Environ. Prot., 19 (2017) 745–759.
- M.C.M. van Loosdrecht, P.H. Nielsen, C.M. Lopez-Vazquez, D.
Brdjanovic, Experimental Methods in Wastewater Treatment,
IWA Publishing, London, 2016.
- Mastersizer 2000 User Manual, issue 10, March 2007. Malvern
Instruments Ltd. UK.
- A.K.H. Kwan, J.J. Chen, Adding fly ash microsphere to improve
packing density, flowability and strength of cement paste,
Powder Technol., 234 (2013) 19–25.
- A. Vollpracht, W. Brameshuber, Binding and leaching of trace
elements in Portland cement paste, Cem. Conc. Res., 79 (2016)
76–92.
- Y.S. Ok, J.E. Yang, Y.S. Zhang, S.J. Kim, D.Y. Chung, Heavy
metal adsorption by a formulated zeolite-Portland cement
mixture, J Hazard. Mater., 147 (2007) 91–96.
- A. Bhatnagar, A.K. Minocha, Utilization of industrial waste for
cadmium removal from water and immobilization in cement,
Chem. Eng. J., 150 (2009) 145–151.
- N.M. Agyei, C.A. Strydom, J.H. Potgieter, The removal of
phosphate ions from aqueous solution by fly ash, slag, ordinary
Portland cement and related blends, Cem. Con. Res., 32 (2002)
1889–1897.
- J. Cantet, E. Paul, F. Clauss, Upgrading performance of an
activated sludge process through addition of talqueous powder,
Wat. Sci. Technol., 34 (1996) 75–83.
- G. Luo, W. Liang, H. Tan, C. Yao, N. Zhang, L. Lu, Effect of
calcium and magnesium addition on the start-up of sequencing
batch reactor using biofloc technology treating solid aquaculture
waste, Aquacult. Eng., 57 (2013) 32–37.
- A. Drzewicki, Effect of application of polyaluminium chloride
on reducing exploitation problems as the wastewater treatment
plant in Olsztyn, Pol. J. Nat. Sci., 24 (2009) 158–168
- M. Geneja, Use of aluminum for controlling the filamentous
bacteria growth in the activated sludge systems. Przem. Chem.,
87 (2008) 452–455.
- P. Princz, J. Oláh, S. Smith, K. Hatfield, Complex Analytical
Procedure for the Characterization of Modified Zeolite and for
the Assessment its Effects on Biological Wastewater Treatment.
XVII IMEKO World Congress Metrology in the 3rd Millenium,
Croatia, Dubrovnik June 22–27, 2003. Proceedings: 2118–2122.
- L. Piirtola, B. Hultman, M. Löwén, Activated sludge ballasting
in pilot plant operation, Wat. Res., 33 (1999) 3026–3032.
- R. Hosseinlou, A. Taebi, Comparison of influence of walnut
shell, clay and powdered activated carbon on settleability of
activated sludge, J. Environ. Stud., 36, 53 (2010) 63–70.
- K.C. Cheung, T.H. Venkitachalam, Improving phosphate
removal of sand infiltration system using alkaline fly ash,
Chemosphere, 41 (2000) 243–249.
- G. Ghanizadeh, R. Sarrafpour, The effects of temperature and
pH on settlability of activated sludge flocs. Iran. J. Public.
Health, 30 (2001) 139–142.
- D.F. Juang, L.J. Chiou, Microbial population structures in
activated sludge before and after the application of synthetic
polymer, Int. J. Environ. Sci. Technol., 4 (2007) 119–125.
- K. Budzińska, M. Bochenek, A. Traczykowski, B. Szejniuk, R.
Pasela, A. Jurek, Elimination of filamentous bacteria in activated
sludge as affected by selected coagulants and oxidizing
compounds, Ann. Set Environ. Prot., 17 (2015) 1569–1582.