References

  1. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable Sustainable Energy Rev., 11 (2007) 401–425.
  2. Y.H. Jiang, F. Li, Y. Liu, Y.Z. Hong, P.P. Liu, L. Ni, Construction of TiO2 hollow nanosphere/g-C3N4 composites with superior visible-light photocatalytic activity and mechanism insight, J. Ind. Eng. Chem., 41 (2016) 130–140.
  3. M.G. Wang, J. Han, Y.M. Hu, R. Guo, Y.D. Yin, Carbonincorporated NiO/TiO2 mesoporous shells with p-n seterojunctions for sfficient sisible sight shotocatalysis, ACS Appl. Mater. Inter., 8 (2016) 29511–29521.
  4. H.J. Zhang, G.H. Chen, D.W. Bahnemann, Photoelectrocatalytic materials for environmental applications, J. Mater. Chem., 19 (2009) 5089–5121.
  5. T. Song, P.Y. Zhang, J. Zeng, T.T. Wang, A. Ali, H.P. Zeng, Boosting the photocatalytic H2 evolution activity of Fe2O3 polymorphs (α-, γ- and β-Fe2O3) by fullerene [C60]-modification and dye-sensitization under visible light irradiation, RSC Adv., 7 (2017) 29184–29192.
  6. J.P. Huo, L.T. Fang, Y.L. Lei, G.C. Zeng, H.P. Zeng, Facile preparation of yttrium and aluminum co-doped ZnO via a sol–gel route for photocatalytic hydrogen production, J. Mater. Chem. A., 2 (2014) 11040–11044.
  7. T. Song, J.P. Huo, T. Liao, J. Zeng, J.Y. Qin, H.P. Zeng, Fullerene [C60] modified Cr2−xFexO3 nanocomposites for enhanced photocatalytic activity under visible light irradiation, Chem. Eng. J., 287 (2016) 359–366.
  8. A. Wang, H.W. Yang, T. Song, Q. Sun, H. Liu, T.T. Wang, H.P. Zeng, Plasmon mediated Fe-O in an octahedral site of cuprospinel by Cu NPs for photocatalytic hydrogen evolution, Nanoscale, 9 (2017) 15760–15765.
  9. W.H. Feng, Z.B. Fang, B. Wang, L.L. Zhang, Y. Zhang, Y. Yang, M. Huang, S.X. Weng, P. Liu, Grain boundary engineering in organic–inorganic hybrid semiconductor ZnS(en)0.5 for visiblelight photocatalytic hydrogen production, J. Mater. Chem. A., 5 (2017) 1387–1393.
  10. Y.J. Hao, S.-Z. Kang, X. Liu, X.Q. Li, L.X. Qin, J. Mu, An efficient noble-metal-free photocatalyst for visible-light-driven H2 evolution: Cu/Ni-codoped Cd0.5Zn0.5S nanoplates, ACS Sustain. Chem. Eng., 5 (2016) 1165–1172.
  11. J. Liu, Y. Liu, N.Y. Liu, Y.Z. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T.Lee, J. Zhong, Z.H. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway, Science, 347 (2015) 970–974.
  12. S.H. Shen, J.W. Shi, P.H. Guo, L.J. Guo, Visible‐lightdriven photocatalytic water splitting on nanostructured semiconducting materials, Int. J. Nanotechnol., 8 (2011) 523–591.
  13. S.H. Shen, J. Chen, X.X. Wang, L. Zhao, L.J. Guo, Microwaveassisted hydrothermal synthesis of transition-metal doped ZnIn2S4 and its photocatalytic activity for hydrogen evolution under visible light, J. Power. Sources., 196 (2011) 10112–10119.
  14. K. Meada, K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light, J. Phys. Chem., 111 (2007) 7851–7861.
  15. R. Dillert, D.H. Taffa, M. Wark, T. Bredow, D.W. Bahnemann, Research update: photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation, APL Mater., 3 (2015) 104001.
  16. P.P. Jing, J.L. Du, J.B. Wang, W. Lan, L.N. Pan, J.N. Li, J.W. Wei, D.R. Cao, X.L. Zhang, C.B. Zhao, Q.F. Liu, Hierarchical SrTiO3/NiFe2O4 composite nanostructures with excellent light response and magnetic performance synthesized toward enhanced photocatalytic activity, Nanoscale, 7 (2015) 14738–14746.
  17. A. Boudjemaa, I. Popescu, T. Juzsakova, M. Kebir, N. Helaili, K. Bachari, I.-C. Marcu, M-substituted (M = Co, Ni and Cu) zinc ferrite photo-catalysts for hydrogen production by water photoreduction, Int. J. Hydrogen Energy, 41 (2016) 11108–11118.
  18. D. Chen, F. Zhang, Q. Li, W.D. Wang, G.R. Qian, Y.G. Jin, Z.P. Xu, A promising synergistic effect of nickel ferrite loaded on the layered double hydroxide-derived carrier for enhanced photocatalytic hydrogen evolution, Int. J. Hydrogen Energy., 42 (2017) 867–875.
  19. H.J. Lv, L. Ma, P. Zeng, D.N. Ke, T.Y. Peng, Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light, J. Mater. Chem., 20 (2010) 3665–3672.
  20. H.M. Gobara, I.M. Nassar, A.M.A. El Naggar, G. Eshaq, Nanocrystalline spinel ferrite for an enriched production of hydrogen through a solar energy stimulated water splitting process, Energy, 118 (2017) 1234–1242.
  21. M. Dhiman, A. Goyal, V. Kumar, S. Singhal, Designing different morphologies of NiFe2O4 for tuning of structural, optical and magnetic properties for catalytic advancements, New J. Chem., 40 (2016) 10418–10431.
  22. J. Chen, D.M. Zhao, Z.D. Diao, M. Wang, S.H. Shen, Ferrites boosting photocatalytic hydrogen evolution over graphitic carbon nitride: a case study of (Co, Ni)Fe2O4 modification, Sci. Bull., 61 (2016) 292–301.
  23. J. Zeng, T. Song, M.X. Lv, T.T. Wang, J.Y. Qin, H.P. Zeng, Plasmonic photocatalyst Au/g-C3N4/NiFe2O4 nanocomposites for enhanced visible-light-driven photocatalytic hydrogen evolution, RSC Adv., 6 (2016) 54964–54975.
  24. A.L. Tiano, G.C. Papaefthymiou, C.S. Lewis, J. Han, C. Zhang, Q. Li, C.Y. Shi, A.M.M. Abeykoon, S.J.L. Billinge, E. Stach, J. Thomas, K. Guerrero, P. Munayco, J. Munayco, R.B. Scorzelli, P. Burnham, A.J. Viescas, S.S. Wong, Correlating size and composition-dependent effects with magnetic, mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles, Chem. Mater., 27 (2015) 3572–3592.
  25. D.C. Hong, Y. Yamada, M. Sheehan, S. Shikano, C.-H. Kuo, M. Tian, C.-K. Tsung, S. Fukuzumi, Mesoporous nickel ferrites with spinel structure prepared by an aerosol spray pyrolysis method for photocatalytic hydrogen evolution, ACS Sustainable Chem. Eng., 2 (2014) 2588–2594.
  26. S.Gogoi, N. Karak, Biobased waterborne hyperbranched polyurethane/NiFe2O4@rGO nanocomposite with multi-stimuli responsive shape memory attributes, RSC Adv., 6 (2016) 94815–94825.
  27. H.S. Kim, D. Kim, B.S. Kwak, G.B. Han, M.-H. Um, M. Kang, Synthesis of magnetically separable core@shell structured NiFe2O4@TiO2 nanomaterial and its use for photocatalytic hydrogen production by methanol/water splitting, Chem. Eng. J., 243 (2014) 272–279.
  28. H.Q. Liu, F. Lian, L. Zhang, M. Liu, Photocatalysis property of titania-based thin films with covalent grafting PANi as sensitizer, Adv. Mater. Res., 549 (2012) 470–473.
  29. D. Hidalgo, S. Bocchini, M. Fontana, G. Saracco, S. Hernández, Green and low-cost synthesis of PANI–TiO2 nanocomposite mesoporous films for photoelectrochemical water splitting, RSC Adv., 5 (2015) 49429–49438.
  30. H. Xu, J.L. Zhang, Y. Chen, H.L. Lu, J.X. Zhuang, J.L. Li, Synthesis of polyaniline-modified MnO2 composite nanorods and their photocatalytic application, Mater. Lett., 117 (2014) 21–23.
  31. T. Wang, D. Wu, Y.L. Wang, T.B. Huang, G. Histand, T.T. Wang, H.P. Zeng, One-step solvothermal fabrication of Cu@PANI core–shell nanospheres for hydrogen evolution, Nanoscale, 10 (2018) 22055–22064.
  32. X.F. Wang, G.M. Chen, J. Zhang, Synthesis and characterization of novel Cu2O/PANI composite photocatalysts with enhanced photocatalytic activity and stability, Catal. Commun., 31 (2013) 57–61.
  33. X.F. Wang, S.J. Feng, W. Zhao, D.L. Zhao, S.H. Chen, Ag/polyaniline heterostructured nanosheets loaded with g-C3N4 nanoparticles for highly efficient photocatalytic hydrogen generation under visible light, New J. Chem., 41 (2017) 9354–9360.
  34. S. Xu, Y.D. Han, Y. Xu, H. Meng, J.L. Xu, J.B. Wu, Y. Xu, X. Zhang, Fabrication of polyaniline sensitized grey-TiO2 nanocomposites and enhanced photocatalytic activity, Sep. Purif. Technol., 184 (2017) 248–256.
  35. D. Chen, C.Y. Mei, L.H. Yao, H.M. Jin, G.R. Qian, Z.P. Xu, Flash fixation of heavy metals from two industrial wastes into ferrite by microwave hydrothermal co-treatment, J. Hazard Mater., 192 (2011) 1675–1682.
  36. H.Q. Tang, J. Li, Y.Q. Bie, L.H. Zhu, J. Zou, Photochemical removal of aniline in aqueous solutions: switching from photocatalytic degradation to photo-enhanced polymerization recovery, J. Hazard Mater., 175 (2010) 977–984.
  37. D. Chen, F. Zhang, W.D. Wang, Y. Yang, G.R. Qian, Synergistic effect of PANI and NiFe2O4 for photocatalytic hydrogen evolution under visible light, Int. J. Hydrogen Energy., 43 (2018) 2121–2129.
  38. T.Z. Zhou, C.P. Li, H.L. Jin, Y.Y. Lian, W.M. Han, Effective adsorption/reduction of Cr(VI) oxyanion by halloysite@ polyaniline hybrid nanotubes, ACS Appl. Mater. Inter., 9 (2017) 6030–6043.
  39. Y. Tomita, H. Nasu, Y. Izumi, J. Arai, S. Otsuka, Y. Yamane, K. Yamada, Y. Kohno, K. Kobayashi, Synthesis and chargedischarge properties of LiF-NiO composite as a cathode material for Li-ion batteries, J. Power Sources, 329 (2016) 406–411.
  40. P.M. Rao, X.L. Zheng, Unique magnetic properties of single crystal gamma-Fe2O3 nanowires synthesized by flame vapor deposition, Nano Lett., 11 (2011) 2390–2395.
  41. D.P. Kumar, S. Hong, D.A. Reddy, T.K. Kim, Ultrathin MoS2 layers anchored exfoliated reduced graphene oxide nanosheet hybrid as a highly efficient cocatalyst for CdS nanorods towards enhanced photocatalytic hydrogen production, Appl. Catal. B, 212 (2017) 7–14.
  42. I. Majeed, M.A. Nadeem, E. Hussain, G.I.N. Waterhouse, A. Badshah, A. Iqbal, M.A. Nadeem, H. Idriss, On the Synergism between Cu and Ni for photocatalytic hydrogen production and their potential as substitutes of noble metals, Chem. Cat. Chem., 8 (2016) 3146–3155.
  43. J.Q. Wen, J. Xie, H.D. Zhang, A.P. Zhang, Y.J. Liu, X.B. Chen, X. Li, Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation, ACS Appl. Mater. Inter., 9 (2017) 14031–14042.
  44. L. Lin, H.Y. Wang, W.B. Jiang, A.R. Mkaouar, P. Xu, Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers, J. Hazard Mater., 333 (2017) 162–168.
  45. F.-B. Li, J.-J. Chen, C.-S. Liu, J. Dong, T.-X. Liu, Effect of iron oxides and carboxylic acids on photochemical degradation of bisphenol A, Biol. Fertil. Soils, 42 (2006) 409–417.
  46. T.C. An, J.X. Chen, G.Y. Li, X.J. Ding, G.Y. Sheng, J.M. Fu, B.X. Mai, K.E. O’Shea, Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts, Catal. Today, 139 (2008) 69-76.