References

  1. M.A. Zazouli, M. Taghavi, Phenol removal from aqueous solutions by electrocoagulation technology using iron electrodes:effect of some variables, J. Water Resour. Prot., 4 (2012) 980–983.
  2. S.H. Lin, R.S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review, J. Environ. Manage., 90 (2009) 1336–1349.
  3. J.P. Kulkarni, J Sunil Kaware, Review on research for removal of phenol from wastewater, Int. J. Sci. Res. Publ., 3 (2013) 1–5.
  4. S.M. Borghei, S.H. Hosseini, The treatment of phenolic wastewater using a moving bed biofilm reactor, Process Biochem., 39 (2004) 1177–1181.
  5. S.M. Safwat, Performance of moving bed biofilm reactor using effective microorganisms, J. Cleaner. Prod., 185 (2018) 723–731.
  6. E. Bazrafshan, H. Biglari, A.H. Mahvi, Phenol removal by electrocoagulation process from aqueous solutions, Fresenius Environ. Bull., 21 (2012) 364–371.
  7. S. Ahmed, E. Rozaik, H. Abdelhalim, Effect of configurations, bacterial adhesion, and anode surface area on performance of microbial fuel cells used for treatment of synthetic wastewater, Water Air Soil Pollut., 226 (2015) 300.
  8. S.M. Safwat, A. Hamed, E. Rozaik, Electrocoagulation/electroflotation of real printing wastewater using copper electrodes: a comparative study with aluminum electrodes, Sep. Sci. Technol, 54 (2019) 183–194. doi:10.1080/01496395.2018. 1494744.
  9. S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review, Sustainable Mater. Technol., 9 (2016) 10–40.
  10. S. Safwat, M. Matta, Adsorption of urea onto granular activated alumina: a comparative study with granular activated carbon, J. Dispers. Sci. Technol., 39 (2018) 1699–1709.
  11. J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, Introduction to adsorption phenomena, Adsorpt. MWH’s Water Treat Princ. Des. (2012). doi:10.1002/9781118131473.ch15.
  12. S.P.D. Kaman, I.A.W. Tan, L.L.P. Lim, Palm oil mill effluent treatment using coconut shell – based activated carbon: adsorption equilibrium and isotherm, MATEC Web Conf., 87 (2017) 03009. doi:10.1051/matecconf/20178703009.
  13. M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: a review, Adv. Colloid Interface Sci., 143 (2008) 48–67.
  14. M.K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J., 308 (2017) 438–462.
  15. T.S. Anirudhan, M. Ramachandran, Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm, Process Saf. Environ. Prot., 95 (2015) 215–225.
  16. A.K. Bhattacharya, T.K. Naiya, S.N. Mandal, S.K. Das, Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents, Chem. Eng. J., 137 (2008) 529–541.
  17. J.U.K. Oubagaranadin, N. Sathyamurthy, Z.V.P. Murthy, Evaluation of Fuller’s earth for the adsorption of mercury from aqueous solutions: a comparative study with activated carbon, J. Hazard. Mater., 142 (2007) 165–174.
  18. Y. Bulut, H. Karaer, Adsorption of methylene blue from aqueous solution by crosslinked chitosan/bentonite composite, J. Dispersion Sci. Technol., 36 (2015) 61–67.
  19. L. Mouni, L. Belkhiri, J.C. Bollinger, A. Bouzaza, A. Assadi, A. Tirri, F. Dahmoune, K. Madani, H. Remini, Removal of methylene blue from aqueous solutions by adsorption on kaolin: kinetic and equilibrium studies, Appl. Clay Sci., 153 (2018) 38–45.
  20. J.M. Li, X.G. Meng, C.W. Hu, J. Du, Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan, Bioresour. Technol., 100 (2009) 1168–1173.
  21. V. Fierro, V. Torné-Fernández, D. Montané, A. Celzard, Adsorption of phenol onto activated carbons having different textural and surface properties, Microporous Mesoporous Mater., 111 (2008) 276–284.
  22. N. Tancredi, N. Medero, F. Möller, J. Píriz, C. Plada, T. Cordero, Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood, J. Colloid Interface Sci.,279 (2004) 357–363.
  23. N. Roostaei, F.H. Tezel, Removal of phenol from aqueous solutions by adsorption, J. Environ. Manage., 70 (2004) 157–164.
  24. S. Bekkouche, M. Bouhelassa, N. Hadj Salah, F.Z. Meghlaoui, Study of adsorption of phenol on titanium oxide (TiO2), Desalination, 166 (2004) 355–362.
  25. A. Alshameri, H. He, J. Zhu, Y. Xi, R. Zhu, L. Ma, Q. Tao, Adsorption of ammonium by different natural clay minerals: characterization, kinetics and adsorption isotherms, Appl. Clay Sci., 159 (2018) 83–93. doi:10.1016/j.clay.2017.11.007.
  26. K. Srinivasarao, S.M. Prabhu, W. Luo, K. Sasaki, Enhanced adsorption of perchlorate by gemini surfactant-modified montmorillonite: synthesis, characterization and their adsorption mechanism, Appl. Clay Sci., 163 (2018) 46–55.
  27. S. Mukherjee, N.K. Gupta, S.P. Roy, S. Dash, A. Kumar, Y.R. Bamankar, T.V.V. Rao, N. Kumar, Y. Naik, Preparation of palladium impregnated alumina adsorbents: thermal and neutron activation analysis, Thermochim. Acta., 625 (2016) 56–64.
  28. P.C.C. Faria, J.J.M. Órfão, M.F.R. Pereira, Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries, Water Res., 38 (2004) 2043–2052.
  29. Y.S. Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh, G.M. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dye. Pigm., 77 (2008) 16–23.
  30. W. Bouguerraa, A. Mnifa, B. Hamrounia, M. Dhahbib, Boron removal by adsorption onto activated alumina and by reverse osmosis, Desalination., 223 (2008) 31–37.
  31. E. Worch, Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling, 2012.
  32. R.N. Coimbra, V. Calisto, C.I.A. Ferreira, V.I. Esteves, M. Otero, Removal of pharmaceuticals from municipal wastewater by adsorption onto pyrolyzed pulp mill sludge, Arab. J. Chem., (2015). doi:10.1016/j.arabjc.2015.12.001.
  33. G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites, Water Res., 18 (1984) 1501–1507.
  34. S. Lagergren, About the Theory of So-Called Adsorption of Soluble Substances, 1898.
  35. I.S. McLintock, The Elovich equation in chemisorption kinetics, Nature, 216 (1967) 1204–1205.
  36. P. Senthil Kumar, S. Ramalingam, R.V. Abhinaya, S.D. Kirupha, A. Murugesan, S. Sivanesan, Adsorption of metal ions onto the chemically modified agricultural waste, Clean - Soil, Air, Water., 40 (2012) 188–197.
  37. P. Senthilkumar, S. Ramalingam, R.V. Abhinaya, S.D. Kirupha, T. Vidhyadevi, S. Sivanesan, Adsorption equilibrium, thermodynamics, kinetics, mechanism and process design of zinc(II) ions onto cashew nut shell, Canadian J. Chem. Eng., 90 (2012) 973–982.
  38. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  39. H.N. Tran, S.J. You, A. Hosseini-Bandegharaei, H.P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res., 120 (2017) 88–116.
  40. M. Belhachemi, F. Addoun, Adsorption of congo red onto activated carbons having different surface properties: studies of kinetics and adsorption equilibrium, Desal. Wat. Treat., 37 (2012) 122–129.
  41. G.E. Boyd, A.W. Adamson, L.S. Myers Jr, The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics1, J. Am. Chem. Soc., 69 (1947) 2836–2848.
  42. H.M.F. Freundlich, Über Die Absorption in Lösungen, Z. Phys. Chem., 57 (1906) 385–470.
  43. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  44. V. Temkin, M.J., Pyzhev, Recent modifications to Langmuir isotherms, Acta Physiochim. URSS., 12 (1940) 217–222.
  45. L.V. Dubinin, M.M., Radushkevich, Equation of the characteristic curve of activated charcoal, Proc. Acad. Sci. Phys. Chem. Sec. USSR., 55 (1947) 331–333.
  46. O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024–1024.
  47. C.C. Leng, N.G. Pinto, Effects of surface properties of activated carbons on adsorption behavior of selected aromatics, Carbon, 35 (1997) 1375–1385.
  48. S.M. Safwat, M. Medhat, H. Abdel-Halim, Adsorption of phenol onto aluminium oxide and zinc oxide: a comparative study with titanium dioxide, Sep. Sci. Technol., (2018) 1–13. doi.org/ 10.1080/01496395.2018.1549572.
  49. R. Dyanati, Z. Yousefi, J. Yazdani Cherati, D. Balarak, Investigating phenol absorption from aqueous solution by dried azolla, J. Maz. Univ. Med. Sci., 22 (2013) 13–20.
  50. M. Ahmaruzzaman, D.K. Sharma, Adsorption of phenols from wastewater, J. Colloid Interface Sci., 287 (2005) 14–24.
  51. Y.I. Tarasevich, Porous structure and adsorption properties of natural porous coal, Colloids Surf., A, 176 (2001) 267–272.
  52. V.K. Gupta, S. Sharma, I.S. Yadav, D. Mohan, Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol and p-nitrophenol from wastewater, J. Chem. Technol. Biotechnol., 71 (1998) 180–186.