References

  1. J.G. Shepherd, S.P. Sohi, K.V. Heal, Optimising the recovery and re-use of phosphorus from wastewater effluent for sustainable fertiliser development, Water. Res., 94 (2016) 155–165.
  2. Y.N. Zhu, X.H. Zhang, Y.D. Chen, Q.L. Xie, J.K. Lan, M.F. Qian, N. He, A comparative study on the dissolution and solubility of hydroxylapatite and fluorapatite at 25°C and 45°C, Chem. Geol., 268 (2009) 89–96.
  3. M. Alemrajabi, Å.C. Rasmuson, K. Korkmaz, K. Forsberg, Recovery of rare earth elements from nitrophosphoric acid solutions, Hydrometallurgy, 169 (2017) 253–262.
  4. K. Binnemans, P.T. Jones, B. Blanpain, T.V. Gerven, Y. Pontikes, Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review, J. Cleaner. Prod., 99 (2015) 17–38.
  5. C. Muntean, W. Brandl, A. Iovi, P. Negrea, Studies on the thermal behavior of a complex mineral fertilizer of nitrophosphate type, Thermochim. Acta., 439 (2005) 21–26.
  6. G.R. Campbell, Y.K. Leong, C.C. Berndt, J.L. Liowa, Ammonium phosphate slurry rheology and particle properties-the influence of Fe (III) and Al (III) impurities, solid concentration and degree of neutralization, Chem. Eng. Sci., 61 (2006) 5856–5866.
  7. Y.K. Leong, M. Sganzerla, C.C. Berndt, G.R. Campbell, Metal ions solubility in plant phosphoric acid degree of ammonia neutralization and temperature effects, Ind. Eng. Chem. Res., 47 (2008) 1380–1385.
  8. S.W. Tang, H. Guo, J.K. Ying, B. Liang, Physicochemical properties of acidic ammonium phosphate slurries, Ind. Eng. Chem. Res., 43 (2004) 3194–3199.
  9. G.M. Ayoub, R.M. Zayyat, M. Al-Hindi, Precipitation softening: a pretreatment process for seawater desalination, Environ. Sci. Pollut. Res. Int., 21 (2014) 2876–2887.
  10. G. Falcon-Millan, M.P. Gonzalez-Muñoz, A. Durand, J.A. Reyes- Aguilera, T.A. Razo-Lazcano, M. Avila-Rodriguez, Phosphoric acid partition in aqueous two phase systems, J. Mol. Liq., 241 (2017) 967–973.
  11. D. Zou, Y. Jin, J. Li, Y.Q. Cao, X. Li, Emulsification solvent extraction of phosphoric acid by tri-n-butyl phosphate using a high-speed shearing machine, Sep. Purif. Technol., 172 (2017) 242–250.
  12. M.P. González, R. Navarro, I. Saucedo, M. Avila, J. Revilla, Ch. Bouchard, Purification of phosphoric acid solutions by reverse osmosis and nanofiltration, Desalination, 147 (2002) 315–320.
  13. M. Naushad, Z.A. ALOthman, G. Sharma, Inamuddin, Kinetics, isotherm and thermodynamic investigations for the adsorption of Co(II) ion onto crystal violet modified amberlite IR-120 resin, Ionics, 21 (2015) 1453–1459.
  14. M. Naushad, G. Sharma, A. Kumar, S. Sharm, A.A. Ghfar, A. Bhatnagar, F.J. Stadler, M.R. Khan, Efficient removal of toxic phosphate anions from aqueous environment using pectin based quaternary amino anion exchanger, Int. J. Biol. Macromol., 106 (2018) 1–10.
  15. Z.H. Yu, T. Qi, J.K. Qu, L. Wang, J.L. Chu, Removal of Ca(II) and Mg(II) from potassium chromate solution on Amberlite IRC 748 synthetic resin by ion exchange, J. Hazard. Mater., 167 (2009) 406–412.
  16. W.T. Yi, C.Y. Yan, P.H. Ma, Removal of calcium and magnesium from LiHCO3 solutions for preparation of high-purity Li2CO3 by ion-exchange resin, Desalination, 249 (2009) 729–735.
  17. L. Monser, M.B. Amor, M. Ksibi, Purification of wet phosphoric acid using modified activated carbon, Chem. Eng. Process., 38 (1999) 267–271.
  18. Y.H. Liu, W. Ma, Z.H. Cheng, J. Xu, R. Wang, X. Gang, Preparing CNTs/Ca-selective zeolite composite electrode to remove calcium ions by capacitive deionization, Desalination, 326 (2013) 109–114.
  19. M. Al-Anbera, Z.A. Al-Anber, Utilization of natural zeolite as ion-exchange and sorbent material in the removal of iron, Desalination, 225 (2008) 70–81.
  20. A.A. El-Bayaa, N.A. Badawy, A.M. Gamal, I.H. Zidan, A.R. Mowafy, Purification of wet process phosphoric acid by decreasing iron and uranium using white silica sand, J. Hazard. Mater., 190 (2011), 324–329.
  21. G. Sharma, B, Thakur, M. Naushad, A. Kumar, F.J. Stadler, S.M. Alfadul, G.T. Mola, Applications of nanocomposite hydrogels for biomedical engineering and environmental protection, Environ. Chem. Lett., 16 (2018) 113–146.
  22. K.L. Ang, D. Li, A.N. Nikoloski, The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 1. Anionic and cationic resins, Hydrometallurgy, 174 (2017) 147–155.
  23. D.J. Hwang, Y.H. Yu, C.S. Baek, G.M. Lee, K.H. Cho, J.W. Ahn, C. Han, J.D. Lee, Preparation of high purity PCC from mediumand low-grade limestones using the strongly acidic cation exchange resin, J. Ind. Eng. Chem., 30 (2015) 309–321.
  24. J.P. Michael, S. Karin, D.O. Mark, Comparative study of the application of chelating resins for rare earth recovery, Hydrometallurgy, 169 (2017) 275–281.
  25. G.J. Millar, S.J. Couperthwaite, M.d. Bruyn, C.W. Leung, Ion exchange treatment of saline solutions using Lanxess S108H strong acid cation resin, Chem. Eng. J., 280 (2015) 525–535.
  26. E.A. Abdel-aal, A.M. Amer, Evalution of Sebaiya-west phosphate concentrate for nitrophosphate fertilizer production, Miner. Eng., 8 (1995) 1221–1230.
  27. I. Hussain, The Operating experience of Nitrophosphate Plant, Procedia. Eng., 46 (2012) 172–177.
  28. K.C. Knudsen, The production of NPK fertilisers by ion exchange, J. appl. Chem. Biotechnol., 24 (1974) 701–708.
  29. Y.I. Lim, S.B. Jørgensen, Optimization of a six-zone simulated moving-bed chromatographic process, Ind. Eng. Chem. Res., 46 (2007) 3684–3697.
  30. K.H. Chu, Improved fixed bed models for metal biosorption, Chem. Eng. J., 97 (2004) 233–239.
  31. S. Kundu, A.K. Gupta, As(III) removal from aqueous medium in fixed bed using iron oxide-coated cement (IOCC): experimental and modeling studies, Chem. Eng. J., 129 (2007) 123–131.
  32. M.D. Víctor-Ortega, J.M. Ochando-Pulido, A. Martıínez-Ferez, Impacts of main parameters on the regeneration process efficiency of several ion exchange resins after final purification of olive mill effluent, Sep. Purif. Technol., 173 (2017) 1–8.
  33. R.S. Juang, H.C. Kao, W. Chen, Column removal of Ni(II) from synthetic electroplating waste water using a strong-acid resin, Sep. Purif. Technol., 49 (2006) 36–42.
  34. M.D. Víctor-Ortega, J.M. Ochando-Pulido, A. Martıínez-Ferez, Iron removal and reuse from Fenton-like pretreated olive mill wastewater with novel strong-acid cation exchange resin fixedbed column, J. Ind. Eng. Chem., 36 (2016) 298–305.
  35. J.P. Chen, M.L. Chua, B.P. Zhang, Effects of competitive ions, humic acid, and pH on removal of ammonium and phosphorous from the synthetic industrial effluent by ion exchange resins, Waste. Manage., 22 (2002) 711–719.
  36. N.H. Shaidan, U. Eldemerdash, S. Awad, Removal of Ni(II) ions from aqueous solutions using fixed-bed ion exchange column technique, J. Taiwan. Inst. Chem. Eng., 43 (2012) 40–45.
  37. Z.H. Yu, T. Qi, J.K. Qu, Y.C. Guo, Application of mathematical models for ion-exchange removal of calcium ions from potassium chromate solutions by Amberlite IRC 748 resin in a continuous fixed bed column, Hydrometallurgy, 158 (2015) 165–171.
  38. M. Coca, S. Mato, G. González-Benito, M.Á. Urueña, M.T. García-Cubero, Use of weak cation exchange resin Lewatit S 8528 as alternative to strong ion exchange resins for calcium salt removal, J. Food. Eng., 97 (2010) 569–573.