References
- N.T. Abdel-Ghani, G.A. El-Chaghaby, Biosorption for metal
ions removal from aqueous solutions: a review of recent
studies, Int. J. Latest Res. Sci. Technol., 3 (2014) 24–42.
- G. Gyananat, D.K. Balhal, Removal of lead (II) from aqueous
solutions by adsorption onto chitosan beads, Cellul. Chem.
Technol., 46 (2012) 121–124.
- Taubayeva A.S. Development of technology for obtaining
sorbents based on humic substances, Of the dissertation for
Doctor of Philosophy (PhD) degree 6D072000 - Chemical
technology of inorganic substances, 2014.
- T.J.K. Ideriah, S. David-Omiema, D.N. Ogbonna, Distribution
of heavy metals in water and sediment along Abonnema
Shoreline, Nigeria, Res. Environ., 2 (2012) 33–40.
- C. Elicker, P.J. Sanches Filho, K.R.L. Castagno,
Electroremediation of heavy metals in sewage sludge,
Braz. J. Chem. Eng., 31 (2014) 365–371.
- Y. Cao, X. Qian, Y. Zhang, G. Qu, T. Xia, X. Guo, H. Jia, T.
Wang, Decomplexation of EDTA-chelated copper and removal
of copper ions by non-thermal plasma oxidation/alkaline
precipitation, Chem. Eng. J., 362 (2019) 487–496.
- H. Bai, S. Wei, Z. Jiang, M. He, B. Ye, G. Liu, Pb (II) bioavailability
to algae (Chlorella pyrenoidosa) in relation to its complexation
with humic acids of different molecular weight, Ecotoxicol.
Environ. Saf., 167 (2019) 1–9.
- S. Thaçi Bashkim, T. Gashi Salih, Reverse osmosis removal
of heavy metals from wastewater effluents using biowaste
materials pretreatment, Pol. J. Environ. Stud., 28 (2019)
337–341.
- J. López, M. Reig, O. Gibert, J.L. Cortina, Recovery of sulphuric
acid and added value metals (Zn, Cu and rare earths) from
acidic mine waters using nanofiltration membranes, Separ.
Purif. Technol., 212 (2018) 180–190.
- G.M. Kirkelund, P.E. Jensen, L.M. Ottosen, K.B. Pedersen,
Comparison of two- and three-compartment cells for
electrodialytic removal of heavy metals from contaminated
material suspensions, J. Hazard. Mater., 367 (2018) 68–76.
- A. Ishfaq, S. Ilyas, A. Yaseen, M. Farhan, Hydrometallurgical
valorization of chromium, iron, and zinc from an electroplating
effluent, Separ. Purif. Technol., 209 (2019) 964–971.
- A.A. Alqadami, M. Naushad, M.A. Abdalla, T. Ahamad,
Z. Abdullah Alothman, S.M. Alshehri, Synthesis and
characterization of Fe3O4@TSCnanocomposite: highly efficient
removal of toxic metal ions from aqueous medium, RSC Adv., 6
(2016) 1–37.
- A.A. Alqadami, M. Naushad, M.A. Abdalla, T. Ahamad, Z.
Abdullah ALOthman, S.M. Alsehri, A.A. Ghfar, Efficient
removal of toxic metal ions from wastewater using a recyclable
nanocomposite: a study of adsorption parameters and
interaction mechanism, J. Cleaner Prod. 156 (2017) 426–436.
- A. Aldawsari, M.A. Khan, B.H. Hameed, A.A. Alqadami,
M.R. Siddiqui, Z.A. Alothman, A.Y.B.H. Ahmed, Mercerized
mesoporous date pit activated carbon — A novel adsorbent to
sequester potentially toxic divalent heavy metals from water,
PLOS One, 12 (2017) 1–17.
- M.A. Khan, A. Alqadami, M. Otero, M.R. Siddiqui, Z.A.
Alothman, I. Alsohaimi, M. Rafatullah, A.E. Hamedelniel,
Heteroatom-doped magnetic hydrochar to remove posttransition
and transition metals from water: Synthesis,
characterization, and adsorption studies, Chemosphere, 218
(2019) 1089–1099.
- S. Wua, J. Hu, L. Wei, Y. Dub, X. Shi, H. Deng, L. Zhang,
Construction of porous chitosan–xylan–TiO2 hybrid with
highly efficient sorption capability on heavy metals, J. Environ.
Chem. Eng., 2 (2014) 1568–1577.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- M. Klučáková, M. Pavlíková, Lignitic humic acids as
environmentally-friendly adsorbent for heavy metals, J. Chem.,
(2017) 1–5.
- E. Lipczynska-Kochany, Humic substances, their microbial
interactions and effects on biological transformations of organic
pollutants in water and soil: a review, Chemosphere, 202 (2018)
420–437.
- E.M. Osnitsky, M.P. Sartakov, E.A. Zarov, Y.M. Deryabina,
Elemental composition of the humic acids in the high-moor
peats of the Western Siberia taiga zone, Res. J. Pharm. Biol.
Chem. Sci., 7 (2016) 3104–3113.
- W.M. Swiech, I. Hamerton, H. Zeng, D.J. Watson, E. Mason,
S.E. Taylor, Water-based fractionation of a commercial humic
acid. Solid-state and colloidal characterization of the solubility
fractions, J. Colloid Interface Sci., 508 (2017) 28–38.
- T. Skripkina, A. Bychkov, V. Tikhova, B. Smolyakov, O.
Lomovsky, Mechanochemically oxidized brown coal and the
effect of its application in polluted water, Environ. Technol.
Innovation, 11 (2018) 74–82.
- V.A. Rumyantsev, A.S. Mityukov, L.N. Kryukov, G.S.
Yaroshevich, Unique properties of humic substances from
sapropel, Dokl. Earth Sci., 473 (2017) 482–484.
- D. Kulikowska, Z.M. Gusiatin, K. Bułkowska, B. Klik, Feasibility
of using humic substances from compost to remove heavy
metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for
different periods of time, J. Hazard. Mater., 300 (2015) 882–891.
- D. Jones, J. Mishler, Humate remediation petroleum
contaminated shorelines. Turning ideas into action: ensuring
effective clean up and restoration in the Gulf, Senate committee
on commerce, science, and transportation, 111 congress USA,
(2010) 29–37.
- M. Karr, Using Humic Substances in the Bioremediation of
Petroleum Polluted Soils., (2018).
- M. Ma, Y. Wei, G. Zhao, F. Liu, Y. Zhu, Characterization and
adsorption mechanism of Pb(II) removal by insolubilized
humic acid in polluted water, Int. J. Environ. Protec. Policy, 2
(2014) 230–235.
- Y. Zheng, S. Hua, A. Wang, Adsorption behavior of Cu2+ from
aqueous solutions onto starch-g-poly (acrylic acid)/sodium
humate hydrogels, Desalination, 263 (2010) 170–175.
- S.M. Shaheen, F.I. Eissa, K.M. Ghanem, H.M. Gamal El-Din, F.S.
Al Anany, Heavy metals removal from aqueous solutions and
wastewaters by using various byproducts, J. Environ. Manage.,
128 (2013) 514–521.
- P. Janos, M. Kormunda, F. Novak, O. Zivotsky, J. Fuitova, V.
Pilarova, Multifunctional humate-based magnetic sorbent:
preparation, properties and sorption of Cu(II), phosphates and
selected pesticides, React. Funct. Polym., 73 (2013) 46–52.
- S. Ivana, Comparative study of binding strengths of heavy
metals with humic acid, Hem. Ind., 67 (2013) 773–779.
- M. Klucakova, Comparative Study of binding behaviour of
Cu(II) with humic acid and simple organic compounds by
ultrasound spectrometry, Open Colloid Sci. J., 5 (2012) 5–12.
- I. Kostiс, T. Anđelkoviс, R. Nikoliс, A. Bojiс, M. Purenoviс, S.
Blagojeviс, D. Anđelkoviс, Copper(II) and lead(II) complexation
by humic acid and humic-like ligands, J. Serb. Chem. Soc., 76
(2011) 1325–1336.
- D. Dudare, M. Klavins, The interaction between humic
substances and metals, depending on structure and properties
of humic substances. 4th International Conference on
Environmental, Energy and Biotechnology, 85 (2015) 10–15.
- S. Erdogan, A. Baysal, O. Akba, C. Hamamci, Interaction of
metals with humic acid isolated from oxidized coal, Poli. J.
Environ. Stud., 5 (2007) 671–675.
- L.V. Bryukhovetskaya, S.I. Zherebtsov, N.V. Malyshenko, Z.R.
Ismagilov, Sorption of copper cations by native and modified
humic acids., Coks. Chim., 59 (2016) 420–423.
- S.I. Zherebtsov, N.V. Malyshenko, L.V. Bryukhovetskaya, Z.R.
Ismagilov, Interaction of copper, zinc, and manganese cations
with lignite and humic acids, Coks. Chim., 60 (2017) 397–403.
- M. Levine Effect of pH on New Mex Humate Treatment, 2012.
- R. Vidali, E. Remoundaki, M. Tsezos, An experimental and
modelling study of Cu2+ binding on humic acids at various
solution conditions. Application of the NICA-Donnan model,
Water Air Soil Pollut., 218 (2011) 487–497.
- A.I. Chechevatov, Y.S. Miroshnichenko, T.N. Myasoyedova, Y.V.
Popov, G.E. Yalovega, Investigations of the capability to heavy
metals adsorption humic acids: correlation between structure
and absorption properties, Springer Proc. Physics., 193 (2017)
99–110.
- R.D. Pike, Structure and bonding in copper(I) carbonyl and
cyanide complexes, Organometallics, 31 (22) (2012) 7647–7660.
- S.F. Lim, Y.M. Gzheng, S. Wenzou, J.P. Chen, Characterization
of copper adsorption onto an alginate encapsulated magnetic
sorbent by a combined FT-IR, XPS, and mathematical modeling
Study, Environ. Sci. Technol., 42 (2008) 2551–2556.
- S.J. Parikh, K.W. Goyne, A.J. Margenot, F.N.D. Mukom, F.J.
Calderón, Soil chemical insights provided through vibrational
spectroscopy, Adv. Agron, 126 (2014) 1–148.
- V. Enev, L. Pospíšilová, M. Klučáková, T. Liptaj, L. Doskočil,
Spectral characterization of selected humic substances, Soil
Water Res., 9 (2014) 9–17.
- S. Orsetti, M. de las Mercedes Quiroga, E.M. Andrade, Binding
of Pb(II) in the system humic acid/goethite at acidic pH,
Chemosphere, 65 (2006) 2313–2321.
- W. Shi, C. Lü, J. He, H. En, M. Gao, B. Zhao, B. Zhou, H. Zhou,
H. Liu, Y. Zhang, Nature differences of humic acids fractions
induced by extracted sequence as explanatory factors for
binding characteristics of heavy metals, Ecotoxicol. Environ.
Saf., 154 (2018) 59–68.
- T. Bohli, I. Villaescusa, A.J. Ouederni, Comparative study of
bivalent cationic metals adsorption Pb(II), Cd(II), Ni(II) and
Cu(II) on olive stones chemically activated carbon, Chem. Eng.
Process Technol., 4 (2013) 1–7.
- A. Alfarraa, E. Frackowiakb, F. Beguin, The HSAB concept as
a mean to interpret the adsorption of metal ions onto activated
carbons, Appl. Surf. Sci., 228 (2004) 84–92.
- J. Wu, L.J. West, D.I. Stewart, Effect of humic substances on
Cu(II) solubility in kaolin-sand soil, J. Hazard Mater., 94 (2002)
223–238.
- J. Kochany, W. Smith, Application of humic substances in
environmental remediation, In Proc. Humic Substances
Seminar IV, (2001) 32.
- M. Havelcova, J. Mizera, I. Sykorova, M. Pekar, Sorption of
metal ions on lignite and the derived humic substances, J.
Hazard. Mater., 161 (2009) 559–564.
- Md. Rabiul Awual, G.E. Eldesoky, T. Yaita, Mu. Naushad,
H. Shiwaku, Z.A. AlOthman, S. Suzuki, Schiff based ligand
containing nano-composite adsorbent for optical copper(II)
ions removal from aqueous solutions, Chem. Eng. J. 279 (2015)
639–647.
- M. Ghasemi, Mu. Naushad, N. Ghasemi, Y. Khosravi-fard,
A novel agricultural waste based adsorbent for the removal
of Pb(II) from aqueous solution: Kinetics, equilibrium and
thermodynamic studies, J. Ind. Eng. Chem., 20 (2014) 454–461.
- A. Mittal, M. Naushad, G. Sharma, Z.A. Alothman, S.M.
Wabaidur, M. Alam, Fabrication of MWCNTs/ThO2
nanocomposite and its adsorption behavior for the removal of
Pb(II) metal from aqueous medium, Desal. Wat. Treat., 57 (2016)
21863–21869.
- M. Naushad, Surfactant assisted nano-composite cation
exchanger: development, characterization and applications for
the removal of toxic Pb2+ from aqueous medium, Chem. Eng. J.,
235 (2014) 100–108.
- M. Naushad, Z.A. ALOthman, Md. Rabiul Awual, M. Mezbaul
Alam, G.E. Eldesoky, Adsorption kinetics, isotherms, and
thermodynamic studies for the adsorption of Pb2+ and Hg2+
metal ions from aqueous medium using Ti(IV) iodovanadate
cation exchanger, Springer-Verlag Berlin Heidelberg, 21 (2015)
2237–2245.
- M. KluIáková1, M. Pavlíková, Lignitic humic acids as
environmentally-friendly adsorbent for heavy metals, J. Chem.
2017 (2017) 1–5.
- P. Janos, J. Fedorovic, P. Stanková, S. Grötschelová, J. Rejnek,
P. Stopka, Iron humate as a low-cost sorbent for metal ions,
Environ. Technol., 27 (2006) 169–181.
- D. Robati, Pseudo-second-order kinetic equations for modeling
adsorption systems for removal of lead ions using multi-walled
carbon nanotube, J. Nanostruct. Chem., 3 (2013) 49–55.
- Z. Aly, A. Graulet, N. Scales, T. Hanley, Removal of aluminium
from aqueous solutions using PAN-based adsorbents:
characterisation, kinetics, equilibrium and thermodynamic
studies, Environ Sci. Pollut. Res., 21 (2014) 3972–3986.
- Y. Liu, Y.-J. Liu, Biosorption isotherms, kinetics and
thermodynamics, Separ. Purif. Technol., 61 (2008) 229–242.