References

  1. N.T. Abdel-Ghani, G.A. El-Chaghaby, Biosorption for metal ions removal from aqueous solutions: a review of recent studies, Int. J. Latest Res. Sci. Technol., 3 (2014) 24–42.
  2. G. Gyananat, D.K. Balhal, Removal of lead (II) from aqueous solutions by adsorption onto chitosan beads, Cellul. Chem. Technol., 46 (2012) 121–124.
  3. Taubayeva A.S. Development of technology for obtaining sorbents based on humic substances, Of the dissertation for Doctor of Philosophy (PhD) degree 6D072000 - Chemical technology of inorganic substances, 2014.
  4. T.J.K. Ideriah, S. David-Omiema, D.N. Ogbonna, Distribution of heavy metals in water and sediment along Abonnema Shoreline, Nigeria, Res. Environ., 2 (2012) 33–40.
  5. C. Elicker, P.J. Sanches Filho, K.R.L. Castagno, Electroremediation of heavy metals in sewage sludge, Braz. J. Chem. Eng., 31 (2014) 365–371.
  6. Y. Cao, X. Qian, Y. Zhang, G. Qu, T. Xia, X. Guo, H. Jia, T. Wang, Decomplexation of EDTA-chelated copper and removal of copper ions by non-thermal plasma oxidation/alkaline precipitation, Chem. Eng. J., 362 (2019) 487–496.
  7. H. Bai, S. Wei, Z. Jiang, M. He, B. Ye, G. Liu, Pb (II) bioavailability to algae (Chlorella pyrenoidosa) in relation to its complexation with humic acids of different molecular weight, Ecotoxicol. Environ. Saf., 167 (2019) 1–9.
  8. S. Thaçi Bashkim, T. Gashi Salih, Reverse osmosis removal of heavy metals from wastewater effluents using biowaste materials pretreatment, Pol. J. Environ. Stud., 28 (2019) 337–341.
  9. J. López, M. Reig, O. Gibert, J.L. Cortina, Recovery of sulphuric acid and added value metals (Zn, Cu and rare earths) from acidic mine waters using nanofiltration membranes, Separ. Purif. Technol., 212 (2018) 180–190.
  10. G.M. Kirkelund, P.E. Jensen, L.M. Ottosen, K.B. Pedersen, Comparison of two- and three-compartment cells for electrodialytic removal of heavy metals from contaminated material suspensions, J. Hazard. Mater., 367 (2018) 68–76.
  11. A. Ishfaq, S. Ilyas, A. Yaseen, M. Farhan, Hydrometallurgical valorization of chromium, iron, and zinc from an electroplating effluent, Separ. Purif. Technol., 209 (2019) 964–971.
  12. A.A. Alqadami, M. Naushad, M.A. Abdalla, T. Ahamad, Z. Abdullah Alothman, S.M. Alshehri, Synthesis and characterization of Fe3O4@TSCnanocomposite: highly efficient removal of toxic metal ions from aqueous medium, RSC Adv., 6 (2016) 1–37.
  13. A.A. Alqadami, M. Naushad, M.A. Abdalla, T. Ahamad, Z. Abdullah ALOthman, S.M. Alsehri, A.A. Ghfar, Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism, J. Cleaner Prod. 156 (2017) 426–436.
  14. A. Aldawsari, M.A. Khan, B.H. Hameed, A.A. Alqadami, M.R. Siddiqui, Z.A. Alothman, A.Y.B.H. Ahmed, Mercerized mesoporous date pit activated carbon — A novel adsorbent to sequester potentially toxic divalent heavy metals from water, PLOS One, 12 (2017) 1–17.
  15. M.A. Khan, A. Alqadami, M. Otero, M.R. Siddiqui, Z.A. Alothman, I. Alsohaimi, M. Rafatullah, A.E. Hamedelniel, Heteroatom-doped magnetic hydrochar to remove posttransition and transition metals from water: Synthesis, characterization, and adsorption studies, Chemosphere, 218 (2019) 1089–1099.
  16. S. Wua, J. Hu, L. Wei, Y. Dub, X. Shi, H. Deng, L. Zhang, Construction of porous chitosan–xylan–TiO2 hybrid with highly efficient sorption capability on heavy metals, J. Environ. Chem. Eng., 2 (2014) 1568–1577.
  17. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  18. M. Klučáková, M. Pavlíková, Lignitic humic acids as environmentally-friendly adsorbent for heavy metals, J. Chem., (2017) 1–5.
  19. E. Lipczynska-Kochany, Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: a review, Chemosphere, 202 (2018) 420–437.
  20. E.M. Osnitsky, M.P. Sartakov, E.A. Zarov, Y.M. Deryabina, Elemental composition of the humic acids in the high-moor peats of the Western Siberia taiga zone, Res. J. Pharm. Biol. Chem. Sci., 7 (2016) 3104–3113.
  21. W.M. Swiech, I. Hamerton, H. Zeng, D.J. Watson, E. Mason, S.E. Taylor, Water-based fractionation of a commercial humic acid. Solid-state and colloidal characterization of the solubility fractions, J. Colloid Interface Sci., 508 (2017) 28–38.
  22. T. Skripkina, A. Bychkov, V. Tikhova, B. Smolyakov, O. Lomovsky, Mechanochemically oxidized brown coal and the effect of its application in polluted water, Environ. Technol. Innovation, 11 (2018) 74–82.
  23. V.A. Rumyantsev, A.S. Mityukov, L.N. Kryukov, G.S. Yaroshevich, Unique properties of humic substances from sapropel, Dokl. Earth Sci., 473 (2017) 482–484.
  24. D. Kulikowska, Z.M. Gusiatin, K. Bułkowska, B. Klik, Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time, J. Hazard. Mater., 300 (2015) 882–891.
  25. D. Jones, J. Mishler, Humate remediation petroleum contaminated shorelines. Turning ideas into action: ensuring effective clean up and restoration in the Gulf, Senate committee on commerce, science, and transportation, 111 congress USA, (2010) 29–37.
  26. M. Karr, Using Humic Substances in the Bioremediation of Petroleum Polluted Soils., (2018).
  27. M. Ma, Y. Wei, G. Zhao, F. Liu, Y. Zhu, Characterization and adsorption mechanism of Pb(II) removal by insolubilized humic acid in polluted water, Int. J. Environ. Protec. Policy, 2 (2014) 230–235.
  28. Y. Zheng, S. Hua, A. Wang, Adsorption behavior of Cu2+ from aqueous solutions onto starch-g-poly (acrylic acid)/sodium humate hydrogels, Desalination, 263 (2010) 170–175.
  29. S.M. Shaheen, F.I. Eissa, K.M. Ghanem, H.M. Gamal El-Din, F.S. Al Anany, Heavy metals removal from aqueous solutions and wastewaters by using various byproducts, J. Environ. Manage., 128 (2013) 514–521.
  30. P. Janos, M. Kormunda, F. Novak, O. Zivotsky, J. Fuitova, V. Pilarova, Multifunctional humate-based magnetic sorbent: preparation, properties and sorption of Cu(II), phosphates and selected pesticides, React. Funct. Polym., 73 (2013) 46–52.
  31. S. Ivana, Comparative study of binding strengths of heavy metals with humic acid, Hem. Ind., 67 (2013) 773–779.
  32. M. Klucakova, Comparative Study of binding behaviour of Cu(II) with humic acid and simple organic compounds by ultrasound spectrometry, Open Colloid Sci. J., 5 (2012) 5–12.
  33. I. Kostiс, T. Anđelkoviс, R. Nikoliс, A. Bojiс, M. Purenoviс, S. Blagojeviс, D. Anđelkoviс, Copper(II) and lead(II) complexation by humic acid and humic-like ligands, J. Serb. Chem. Soc., 76 (2011) 1325–1336.
  34. D. Dudare, M. Klavins, The interaction between humic substances and metals, depending on structure and properties of humic substances. 4th International Conference on Environmental, Energy and Biotechnology, 85 (2015) 10–15.
  35. S. Erdogan, A. Baysal, O. Akba, C. Hamamci, Interaction of metals with humic acid isolated from oxidized coal, Poli. J. Environ. Stud., 5 (2007) 671–675.
  36. L.V. Bryukhovetskaya, S.I. Zherebtsov, N.V. Malyshenko, Z.R. Ismagilov, Sorption of copper cations by native and modified humic acids., Coks. Chim., 59 (2016) 420–423.
  37. S.I. Zherebtsov, N.V. Malyshenko, L.V. Bryukhovetskaya, Z.R. Ismagilov, Interaction of copper, zinc, and manganese cations with lignite and humic acids, Coks. Chim., 60 (2017) 397–403.
  38. M. Levine Effect of pH on New Mex Humate Treatment, 2012.
  39. R. Vidali, E. Remoundaki, M. Tsezos, An experimental and modelling study of Cu2+ binding on humic acids at various solution conditions. Application of the NICA-Donnan model, Water Air Soil Pollut., 218 (2011) 487–497.
  40. A.I. Chechevatov, Y.S. Miroshnichenko, T.N. Myasoyedova, Y.V. Popov, G.E. Yalovega, Investigations of the capability to heavy metals adsorption humic acids: correlation between structure and absorption properties, Springer Proc. Physics., 193 (2017) 99–110.
  41. R.D. Pike, Structure and bonding in copper(I) carbonyl and cyanide complexes, Organometallics, 31 (22) (2012) 7647–7660.
  42. S.F. Lim, Y.M. Gzheng, S. Wenzou, J.P. Chen, Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling Study, Environ. Sci. Technol., 42 (2008) 2551–2556.
  43. S.J. Parikh, K.W. Goyne, A.J. Margenot, F.N.D. Mukom, F.J. Calderón, Soil chemical insights provided through vibrational spectroscopy, Adv. Agron, 126 (2014) 1–148.
  44. V. Enev, L. Pospíšilová, M. Klučáková, T. Liptaj, L. Doskočil, Spectral characterization of selected humic substances, Soil Water Res., 9 (2014) 9–17.
  45. S. Orsetti, M. de las Mercedes Quiroga, E.M. Andrade, Binding of Pb(II) in the system humic acid/goethite at acidic pH, Chemosphere, 65 (2006) 2313–2321.
  46. W. Shi, C. Lü, J. He, H. En, M. Gao, B. Zhao, B. Zhou, H. Zhou, H. Liu, Y. Zhang, Nature differences of humic acids fractions induced by extracted sequence as explanatory factors for binding characteristics of heavy metals, Ecotoxicol. Environ. Saf., 154 (2018) 59–68.
  47. T. Bohli, I. Villaescusa, A.J. Ouederni, Comparative study of bivalent cationic metals adsorption Pb(II), Cd(II), Ni(II) and Cu(II) on olive stones chemically activated carbon, Chem. Eng. Process Technol., 4 (2013) 1–7.
  48. A. Alfarraa, E. Frackowiakb, F. Beguin, The HSAB concept as a mean to interpret the adsorption of metal ions onto activated carbons, Appl. Surf. Sci., 228 (2004) 84–92.
  49. J. Wu, L.J. West, D.I. Stewart, Effect of humic substances on Cu(II) solubility in kaolin-sand soil, J. Hazard Mater., 94 (2002) 223–238.
  50. J. Kochany, W. Smith, Application of humic substances in environmental remediation, In Proc. Humic Substances Seminar IV, (2001) 32.
  51. M. Havelcova, J. Mizera, I. Sykorova, M. Pekar, Sorption of metal ions on lignite and the derived humic substances, J. Hazard. Mater., 161 (2009) 559–564.
  52. Md. Rabiul Awual, G.E. Eldesoky, T. Yaita, Mu. Naushad, H. Shiwaku, Z.A. AlOthman, S. Suzuki, Schiff based ligand containing nano-composite adsorbent for optical copper(II) ions removal from aqueous solutions, Chem. Eng. J. 279 (2015) 639–647.
  53. M. Ghasemi, Mu. Naushad, N. Ghasemi, Y. Khosravi-fard, A novel agricultural waste based adsorbent for the removal of Pb(II) from aqueous solution: Kinetics, equilibrium and thermodynamic studies, J. Ind. Eng. Chem., 20 (2014) 454–461.
  54. A. Mittal, M. Naushad, G. Sharma, Z.A. Alothman, S.M. Wabaidur, M. Alam, Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium, Desal. Wat. Treat., 57 (2016) 21863–21869.
  55. M. Naushad, Surfactant assisted nano-composite cation exchanger: development, characterization and applications for the removal of toxic Pb2+ from aqueous medium, Chem. Eng. J., 235 (2014) 100–108.
  56. M. Naushad, Z.A. ALOthman, Md. Rabiul Awual, M. Mezbaul Alam, G.E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger, Springer-Verlag Berlin Heidelberg, 21 (2015) 2237–2245.
  57. M. KluIáková1, M. Pavlíková, Lignitic humic acids as environmentally-friendly adsorbent for heavy metals, J. Chem. 2017 (2017) 1–5.
  58. P. Janos, J. Fedorovic, P. Stanková, S. Grötschelová, J. Rejnek, P. Stopka, Iron humate as a low-cost sorbent for metal ions, Environ. Technol., 27 (2006) 169–181.
  59. D. Robati, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, J. Nanostruct. Chem., 3 (2013) 49–55.
  60. Z. Aly, A. Graulet, N. Scales, T. Hanley, Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies, Environ Sci. Pollut. Res., 21 (2014) 3972–3986.
  61. Y. Liu, Y.-J. Liu, Biosorption isotherms, kinetics and thermodynamics, Separ. Purif. Technol., 61 (2008) 229–242.