References

  1. J.S. Lee, J. Jang, Hetero-structured semiconductor nanomaterials for photocatalytic applications, J. Ind. Eng. Chem., 20 (2014) 363–371.
  2. P.A.K. Reddya, P.V.L. Reddy, E. Kwon, K. H Kim, T. Akter, S. Kalagara, Recent advances in photocatalytic treatment of pollutants in aqueous media, Environ. Int., 91 (2016) 94–103.
  3. J. Chen, F. Qiu, W. Xu, S. Cao, H. Zhu, Recent progress in enhancing photocatalytic efficiency of TiO2-based materials, Appl. Catal., A., 495 (2015) 131–140.
  4. K. Kabra, R. Chaudhary, R.L. Sawhney, Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review, Ind. Eng. Chem. Res., 43 (2004) 7683–7696.
  5. X.B. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107 (2007) 2891–2959.
  6. T. Fotiou, T.M. Triantis, T. Kaloudis, A. Hiskia, Evaluation of the photocatalytic activity of TiO2 based catalysts for the degradation and mineralization of cyanobacterial toxins and water off-odor compounds under UV-A, solar and visible light, Chem. Eng. J., 261 (2015) 17–26.
  7. M. Xing, Y. Zhou, C. Dong, L. Cai, L. Zeng, B. Shen, L. Pan, C. Dong, Y. Chai, J. Zhang, Y. Yin, Modulation of the reduction potential of TiO2–x by fluorination for efficient and selective CH4 generation from CO2 photoreduction, Nano Lett., 18 (2018) 3384–3390.
  8. C. Dong, C. Lian, S. Hu, Z. Deng, J. Gong, M. Li, H. Liu, M. Xing, J. Zhang, Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles, Nat. Commun., 9 (2018) 1252.
  9. S.F. Chen, J.P. Li, K. Qian, W.P. Xu, Y. Lu, W.X. Huang, S.H. Yu, Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect, Nano. Res., 3 (2010) 244–255.
  10. Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Daib and M-H. Whangbo, Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol, J. Mater. Chem., 21 (2011) 9079–9087.
  11. M. Maicu, M.C. Hidalgo, G. Colón, J.A. Navío, Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol, J. Photochem. Photobiol., A., 217 (2011) 275–283.
  12. F.J. Beltrán, F.J. Rivas, R. Montero-de-Espinosa, Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol, Appl. Catal., B., 39 (2002) 221–231.
  13. J. Marugán, R. Grieken, A.E. Cassano, O.M. Alfano, Scaling-up of slurry reactors for the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions, Catal. Today, 144 (2009) 87–93.
  14. S. Pakdaman, A. Ebrahimian, N. Gilani, Deposition of Ag nanoparticles onto TiO2/Fe3O4/MWCNTs quaternary nanocomposite: a visible-light-driven plasmonic photocatalyst for degradation of 2,4-dichlorophenol, Desal. Wat. Treat., 102 (2018) 241–252.
  15. A. Gharaee, A. Ebrahimian, Z. Khodaee, Photodeposition of silver on p-Cu2O/n-TiO2 nanocomposite applied to visible light degradation of 2,4-dichlorophenol in synthetic wastewater, Desal. Wat. Treat., 114 (2018) 205–220.
  16. N. Esmaeili, A. Ebrahimian, Z. Khodaee, Visible-light active and magnetically recyclable Ag-coated Fe3O4/TiO2 nanocomposites for efcient photocatalytic oxidation of 2,4-dichlorophenol, Desal. Wat. Treat., 114 (2018) 251–264.
  17. A. Ebrahimian, P. Monazzam, B.F. Kisomi, Co/TiO2 nanoparticles: preparation, characterization and its application for photocatalytic degradation of methylene blue, Desal. Wat. Treat., 63 (2017) 283–292.
  18. M. Iwasaki, M. Hara, H. Kawada, H. Tada, S. Ito, Cobalt iondoped TiO2 photocatalyst response to visible light, J. Colloid Interface Sci., 224 (2000) 202–204.
  19. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 108 (2008) 2064–2110.
  20. J. Fu, Sh. Cao, J. Yu, Dual Z-scheme charge transfer in TiO2/Ag/Cu2O composite for enhanced photocatalytic hydrogen generation, J. Materiomics, 1 (2015) 124–133.
  21. Z. Mo, C. Zhang, R. Guo, S. Meng, J. Zhang, Synthesis of Fe3O4 nanoparticles using controlled ammonia vapor diffusion under ultrasonic irradiation, Ind. Eng. Chem. Res., 50 (2011) 3534–3539.
  22. J. Lu, M. Wang, C. Deng, X. Zhang, Facile synthesis of Fe3O4@ mesoporous TiO2 microspheres for selective enrichment of phosphopeptides for phosphoproteomics analysis, Talanta, 105 (2013) 20–27.
  23. V.G. Deshmane, S.L. Owen, R.Y. Abrokwah, D. Kuilaa, Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni, Pd, Zn, and Sn) catalysts: effect of metal-support interactions on steam reforming of methanol, J. Mol. Catal. A: Chem., 408 (2015) 202–213.
  24. Q. Chen, F. Ji, T. Liu, P. Yan, W. Guan, X. Xu, Synergistic effect of bifunctional Co–TiO2 catalyst on degradation of Rhodamine B: Fenton-photo hybrid process, Chem. Eng. J., 229 (2013) 57–65.
  25. M. Khan, W. Cao, Cationic (V, Y)-co-doped TiO2 with enhanced visible light induced photocatalytic activity: a combined experimental and theoretical study, J. Appl. Phys., 114 (2013) 183514.
  26. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Sol-gel preparation and characterization of Co/TiO2 nanoparticles: application to the degradation of methyl orange, J. Iran. Chem. Soc., 7 (2010) 52–58.
  27. I. Ganesh, A.K. Gupta, P.P. Kumar, P.S. Chandra Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications, Mater. Chem. Phys., 135 (2012) 220–234.
  28. S. Kumar, S. Khanchandani, M. Thirumal, A.K. Ganguli, Achieving enhanced visible-light-driven photocatalysis using type-II NaNbO3/CdS core/shell heterostructures, ACS Appl. Mater. Interfaces., 6 (2014) 13221–13233.
  29. S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater., 170 (2009) 560–569.
  30. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 32 (2004) 33–177.
  31. N. Venkatachalam, M. Palanichamy, B. Arabindoo, V. Murugesan, Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2, J. Mol. Catal. A: Chem., 266 (2007) 158–165.
  32. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 57 (1985) 603–619.
  33. Z. Teng, X. Su, G. Chen, C. Tian, H. Li, L. Ai, G. Lu, Superparamagnetic high-magnetization composite microspheres with Fe3O4@SiO2 core and highly crystallized mesoporous TiO2 shell, Colloids Surf., A., 402 (2012) 60–65.
  34. S.J. Yeo, H. Kang, Y.H. Kim, S. Han, P.J. Yoo, Layer-by-layer assembly of polyelectrolyte multilayers in three-dimensional inverse opal structured templates, ACS Appl. Mater. Interfaces., 4 (2012) 2107–2115.
  35. M. Asiltürk, F. Sayılkan, E. Arpaç, Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation, J. Photochem. Photobiol., A., 203 (2009) 64–71.
  36. L. Wu, A. Li, G. Gao, Zh. Fei, Sh. Xu, Q. Zhang, Efficient photodegradation of 2,4-dichlorophenol in aqueous solution catalyzed by polydivinylbenzene-supported zinc phthalocyanine, J. Mol. Catal. A: Chem., 269 (2007) 183–189.