References
- J.S. Lee, J. Jang, Hetero-structured semiconductor nanomaterials
for photocatalytic applications, J. Ind. Eng. Chem., 20 (2014)
363–371.
- P.A.K. Reddya, P.V.L. Reddy, E. Kwon, K. H Kim, T. Akter,
S. Kalagara, Recent advances in photocatalytic treatment of
pollutants in aqueous media, Environ. Int., 91 (2016) 94–103.
- J. Chen, F. Qiu, W. Xu, S. Cao, H. Zhu, Recent progress in
enhancing photocatalytic efficiency of TiO2-based materials,
Appl. Catal., A., 495 (2015) 131–140.
- K. Kabra, R. Chaudhary, R.L. Sawhney, Treatment of hazardous
organic and inorganic compounds through aqueous-phase
photocatalysis: a review, Ind. Eng. Chem. Res., 43 (2004) 7683–7696.
- X.B. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis,
properties, modifications, and applications, Chem. Rev., 107
(2007) 2891–2959.
- T. Fotiou, T.M. Triantis, T. Kaloudis, A. Hiskia, Evaluation
of the photocatalytic activity of TiO2 based catalysts for the
degradation and mineralization of cyanobacterial toxins and
water off-odor compounds under UV-A, solar and visible light,
Chem. Eng. J., 261 (2015) 17–26.
- M. Xing, Y. Zhou, C. Dong, L. Cai, L. Zeng, B. Shen, L. Pan, C.
Dong, Y. Chai, J. Zhang, Y. Yin, Modulation of the reduction
potential of TiO2–x by fluorination for efficient and selective
CH4 generation from CO2 photoreduction, Nano Lett., 18 (2018)
3384–3390.
- C. Dong, C. Lian, S. Hu, Z. Deng, J. Gong, M. Li, H. Liu, M. Xing,
J. Zhang, Size-dependent activity and selectivity of carbon
dioxide photocatalytic reduction over platinum nanoparticles,
Nat. Commun., 9 (2018) 1252.
- S.F. Chen, J.P. Li, K. Qian, W.P. Xu, Y. Lu, W.X. Huang, S.H. Yu,
Large scale photochemical synthesis of M@TiO2 nanocomposites
(M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation
performance, and antibacterial effect, Nano. Res., 3 (2010)
244–255.
- Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Daib and M-H.
Whangbo, Facile in situ synthesis of visible-light plasmonic
photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their
photocatalytic oxidation of benzene to phenol, J. Mater. Chem.,
21 (2011) 9079–9087.
- M. Maicu, M.C. Hidalgo, G. Colón, J.A. Navío, Comparative
study of the photodeposition of Pt, Au and Pd on pre-sulphated
TiO2 for the photocatalytic decomposition of phenol, J.
Photochem. Photobiol., A., 217 (2011) 275–283.
- F.J. Beltrán, F.J. Rivas, R. Montero-de-Espinosa, Comparative
study of the photodeposition of Pt, Au and Pd on pre-sulphated
TiO2 for the photocatalytic decomposition of phenol, Appl.
Catal., B., 39 (2002) 221–231.
- J. Marugán, R. Grieken, A.E. Cassano, O.M. Alfano, Scaling-up
of slurry reactors for the photocatalytic oxidation of cyanide
with TiO2 and silica-supported TiO2 suspensions, Catal. Today,
144 (2009) 87–93.
- S. Pakdaman, A. Ebrahimian, N. Gilani, Deposition of
Ag nanoparticles onto TiO2/Fe3O4/MWCNTs quaternary
nanocomposite: a visible-light-driven plasmonic photocatalyst
for degradation of 2,4-dichlorophenol, Desal. Wat. Treat., 102
(2018) 241–252.
- A. Gharaee, A. Ebrahimian, Z. Khodaee, Photodeposition of
silver on p-Cu2O/n-TiO2 nanocomposite applied to visible light
degradation of 2,4-dichlorophenol in synthetic wastewater,
Desal. Wat. Treat., 114 (2018) 205–220.
- N. Esmaeili, A. Ebrahimian, Z. Khodaee, Visible-light active and
magnetically recyclable Ag-coated Fe3O4/TiO2 nanocomposites
for efcient photocatalytic oxidation of 2,4-dichlorophenol,
Desal. Wat. Treat., 114 (2018) 251–264.
- A. Ebrahimian, P. Monazzam, B.F. Kisomi, Co/TiO2
nanoparticles: preparation, characterization and its application
for photocatalytic degradation of methylene blue, Desal. Wat.
Treat., 63 (2017) 283–292.
- M. Iwasaki, M. Hara, H. Kawada, H. Tada, S. Ito, Cobalt iondoped
TiO2 photocatalyst response to visible light, J. Colloid
Interface Sci., 224 (2000) 202–204.
- S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst,
R.N. Muller, Magnetic iron oxide nanoparticles: synthesis,
stabilization, vectorization, physicochemical characterizations,
and biological applications, Chem. Rev., 108 (2008) 2064–2110.
- J. Fu, Sh. Cao, J. Yu, Dual Z-scheme charge transfer in TiO2/Ag/Cu2O composite for enhanced photocatalytic hydrogen
generation, J. Materiomics, 1 (2015) 124–133.
- Z. Mo, C. Zhang, R. Guo, S. Meng, J. Zhang, Synthesis of
Fe3O4 nanoparticles using controlled ammonia vapor diffusion
under ultrasonic irradiation, Ind. Eng. Chem. Res., 50 (2011)
3534–3539.
- J. Lu, M. Wang, C. Deng, X. Zhang, Facile synthesis of Fe3O4@
mesoporous TiO2 microspheres for selective enrichment of
phosphopeptides for phosphoproteomics analysis, Talanta, 105
(2013) 20–27.
- V.G. Deshmane, S.L. Owen, R.Y. Abrokwah, D. Kuilaa,
Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni,
Pd, Zn, and Sn) catalysts: effect of metal-support interactions
on steam reforming of methanol, J. Mol. Catal. A: Chem., 408
(2015) 202–213.
- Q. Chen, F. Ji, T. Liu, P. Yan, W. Guan, X. Xu, Synergistic effect of
bifunctional Co–TiO2 catalyst on degradation of Rhodamine B:
Fenton-photo hybrid process, Chem. Eng. J., 229 (2013) 57–65.
- M. Khan, W. Cao, Cationic (V, Y)-co-doped TiO2 with enhanced
visible light induced photocatalytic activity: a combined
experimental and theoretical study, J. Appl. Phys., 114 (2013)
183514.
- M. Hamadanian, A. Reisi-Vanani, A. Majedi, Sol-gel preparation
and characterization of Co/TiO2 nanoparticles: application to
the degradation of methyl orange, J. Iran. Chem. Soc., 7 (2010)
52–58.
- I. Ganesh, A.K. Gupta, P.P. Kumar, P.S. Chandra Sekhar, K.
Radha, G. Padmanabham, G. Sundararajan, Preparation and
characterization of Co-doped TiO2 materials for solar light
induced current and photocatalytic applications, Mater. Chem.
Phys., 135 (2012) 220–234.
- S. Kumar, S. Khanchandani, M. Thirumal, A.K. Ganguli,
Achieving enhanced visible-light-driven photocatalysis using
type-II NaNbO3/CdS core/shell heterostructures, ACS Appl.
Mater. Interfaces., 6 (2014) 13221–13233.
- S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of
making TiO2 and ZnO visible light active, J. Hazard. Mater., 170
(2009) 560–569.
- O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of
titanium dioxide, Prog. Solid State Chem., 32 (2004) 33–177.
- N. Venkatachalam, M. Palanichamy, B. Arabindoo, V.
Murugesan, Enhanced photocatalytic degradation of
4-chlorophenol by Zr4+ doped nano TiO2, J. Mol. Catal. A:
Chem., 266 (2007) 158–165.
- K.S.W. Sing, Reporting physisorption data for gas/solid systems
with special reference to the determination of surface area and
porosity (Recommendations 1984), Pure Appl. Chem., 57 (1985)
603–619.
- Z. Teng, X. Su, G. Chen, C. Tian, H. Li, L. Ai, G. Lu,
Superparamagnetic high-magnetization composite
microspheres with Fe3O4@SiO2 core and highly crystallized
mesoporous TiO2 shell, Colloids Surf., A., 402 (2012) 60–65.
- S.J. Yeo, H. Kang, Y.H. Kim, S. Han, P.J. Yoo, Layer-by-layer
assembly of polyelectrolyte multilayers in three-dimensional
inverse opal structured templates, ACS Appl. Mater. Interfaces.,
4 (2012) 2107–2115.
- M. Asiltürk, F. Sayılkan, E. Arpaç, Effect of Fe3+ ion doping to
TiO2 on the photocatalytic degradation of Malachite Green dye
under UV and vis-irradiation, J. Photochem. Photobiol., A., 203
(2009) 64–71.
- L. Wu, A. Li, G. Gao, Zh. Fei, Sh. Xu, Q. Zhang, Efficient
photodegradation of 2,4-dichlorophenol in aqueous
solution catalyzed by polydivinylbenzene-supported zinc
phthalocyanine, J. Mol. Catal. A: Chem., 269 (2007) 183–189.