References

  1. E. Drioli, A. Ali, F. Macedonio, Membrane distillation: recent developments and perspectives, Desalination, 356 (2015) 56–84.
  2. X. Yang, R. Wang, A.G. Fane, Novel designs for improving the performance of hollow fiber membrane distillation modules, J. Membr. Sci., 384 (2011) 52–62.
  3. J.-M. Zheng, Z.-K. Xu, J.-M. Li, S.-Y. Wang, Y.-Y. Xu, Influence of random arrangement of hollow fiber membranes on shell side mass transfer performance: a novel model prediction, J. Membr. Sci., 236 (2004) 145–151.
  4. R.R. Donald, M.W. Everett, M.J. Murdock, Fluid Separation Process and Apparatus, US3339341A, 1967.
  5. R.W. Schofield, A.G. Fane, C.J.D. Fell, Heat and mass transfer in membrane distillation, J. Membr. Sci., 33 (1987) 299–313.
  6. X. Yang, H. Yu, R. Wang, A.G. Fane, Optimization of microstructured hollow fiber design for membrane distillation applications using CFD modeling, J. Membr. Sci., 421–422 (2012) 258–270.
  7. S.-M. Huang, M. Yang, Y. Yang, X. Yang, Fluid flow and heat transfer across an elliptical hollow fiber membrane tube bank for air humidification, Int. J. Thermal Sci., 73 (2013) 28–37.
  8. H. Yu, X. Yang, R. Wang, A.G. Fane, Analysis of heat and mass transfer by CFD for performance enhancement in direct contact membrane distillation, J. Membr. Sci., 405–406 (2012) 38–47.
  9. X. Yang, H. Yu, R. Wang, A.G. Fane, Analysis of the effect of turbulence promoters in hollow fiber membrane distillation modules by computational fluid dynamic (CFD) simulations, J. Membr. Sci., 415–416 (2012) 758–769.
  10. Š. Schlosser, E. Sabolová, Three-phase contactor with distributed U-shaped bundles of hollow-fibers for pertraction, J. Membr. Sci., 210 (2002) 331–347.
  11. J.L. Trimmer, G.E. Mahley, S.A. Dunning, D.O. Clark, Flexible Hollow Fiber Fluid Separation Module, US5202023A, 1993.
  12. M.M. Teoh, S. Bonyadi, T.-S. Chung, Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process, J. Membr. Sci., 311 (2008) 371–379.
  13. J.N. Ghogomu, C. Guigui, J.C. Rouch, M.J. Clifton, P. Aptel, Hollow-fibre membrane module design: comparison of different curved geometries with Dean vortices, J. Membr. Sci., 181 (2001) 71–80.
  14. X. Yang, R. Wang, A.G. Fane, C.Y. Tang, I. Wenten, Membrane module design and dynamic shear-induced techniques to enhance liquid separation by hollow fiber modules: a review, Desal. Wat. Treat., 51 (2013) 3604–3627.
  15. M. Qtaishat, T. Matsuura, B. Kruczek, M. Khayet, Heat and mass transfer analysis in direct contact membrane distillation, Desalination, 219 (2008) 272–292.
  16. Y. Yun, R. Ma, W. Zhang, A.G. Fane, J. Li, Direct contact membrane distillation mechanism for high concentration NaCl solutions, Desalination, 188 (2006) 251–262.
  17. C. Yang, M. Tian, Y. Xie, X.-M. Li, B. Zhao, T. He, J. Liu, Effective evaporation of CF 4 plasma modified PVDF membranes in direct contact membrane distillation, J. Membr. Sci., 482 (2015) 25–32.
  18. K.W. Lawson, D.R. Lloyd, Membrane distillation. II. Direct contact MD, J. Membr. Sci., 120 (1996) 123–133.
  19. G. Chen, Y. Lu, W.B. Krantz, R. Wang, A.G. Fane, Quantitative study on crystallization-induced scaling in high-concentration direct-contact membrane distillation, Ind. Eng. Chem. Res., 53 (2014) 15656–15666.
  20. H. Yu, X. Yang, R. Wang, A.G. Fane, Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow, J. Membr. Sci., 384 (2011) 107–116.
  21. B. Lian, Y. Wang, P. Le-Clech, V. Chen, G. Leslie, A numerical approach to module design for crossflow vacuum membrane distillation systems, J. Membr. Sci., 510 (2016) 489–496.
  22. R. Kaya, G. Deveci, T. Turken, R. Sengur, S. Guclu, D.Y. Koseoglu-Imer, I. Koyuncu, Analysis of wall shear stress on the outside-in type hollow fiber membrane modules by CFD simulation, Desalination, 351 (2014) 109–119.
  23. L. Wang, H. Wang, B. Li, Y. Wang, S. Wang, Novel design of liquid distributors for VMD performance improvement based on cross-flow membrane module, Desalination, 336 (2014) 80–86.