References

  1. EC, European Union Commission, Council Regulation (EC) No. 1513/2001 of 23 July 2001 amending regulation (EC) 136/66/ EEC and No. 1638/98 as regards the extension of the period of validity of the aid scheme and the quality strategy for olive oil. Off. J. Eur. Commun. L., 201, 4–7.
  2. E. Gimeno, A.I. Castellote, R.M. Lamuela-Raventós, M.C. De la Torre, M.C. López-Sabater, The effects of harvest and extraction methods on the antioxidant content (phenolics, α-tocopherol, and β-carotene) in virgin olive oil, Food. Chem., 78 (2002) 207–211.
  3. S. Souilem, A. El-Abbassi, H. Kiai, A. Hafidi, S. Sayadi, C.M. Galanakis, Olive Mill Waste: Recent Advances for sustainable Management, Chapter 1, 1–28, C.M. Calanakis, ed., Galanakis Laboratories, China, Greece, 2017.
  4. G. Altieri, G.C. Di Renzo, F. Genovese, Horizontal centrifuge with screw conveyor (decanter): optimization of oil/water levels and differential speed during olive oil extraction, J. Food. Eng., 119 (2013) 561–572.
  5. N. Kalogeropoulos, A.C. Kaliora, A. Artemiou, I. Giogios, Composition, volatile profiles and functional properties of virgin olive oils produced by two-phase vs three-phase centrifugal decanters, LWT – Food. Sci. Tech., 58 (2014) 272–279.
  6. L. Cecchi, M. Bellumori, C. Cipriani, A. Mocalic, M. Innocenti, N. Mulinacci, L. Giovannelli, A two-phase olive mill by-product (pâté) as a convenient source of phenolic compounds: content, stability, and antiaging properties in cultured human fibroblasts, J. Funct. Foods., 40 (2018) 751–759.
  7. F. El-Gohary, A. Tawfik, M. Badawy, M.A. El-Khateeb, Potentials of anaerobic treatment for catalytically oxidized olive mill wastewater (OMW), Bioresour. Technol., 7 (2009) 2147–2154.
  8. F.A. El-Gohary, M.I. Badawy, M.A. El-Khateeb, A.S. El-Kalliny, Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton’s reaction and anaerobic treatment, J. Hazard. Mater., 162 (2009) 1536–1541.
  9. J. Jaafari, A. Mesdaghinia, R. Nabizadeh, M. Hoseini, H. kamani, A.H. Mahvi, Influence of upflow velocity on performance and biofilm characteristics of anaerobic fluidized bed reactor (AFBR) in treating high-strength wastewater, J. Environ. Health. Sci. Eng., 12 (2014) 139.
  10. M.M. Al-Enazi, M.A. El-Khateeb, A.Z. El-Bahrawy, Combining chemical treatment and sand filtration for the olive mill wastewater reclamation, Life. Sci. J., 3 (2013) 583–592.
  11. S.L. Carlos, M.G. Juan, R.D. Joaquin, J.B. De Heredia, A.P. Jose, Combined treatment of olive mill wastewater by Fenton’s reagent and anaerobic biological process, J. Environ. Sci. Health., Part. A, 50 (2015) 161–168.
  12. L. Bertin, M. Majone, D. Di Gioi, F. Fav, An aerobic fixed low-molecular weight aromatic compounds occurring in the effluents of anaerobic digesters treating olive mill wastewaters. J. Biotechnol., 87 (2001) 161–177.
  13. J.M. Ochando-Pulido, S. Pimentel-Moral, V. Verardo, A. Martinez-Ferez, A focus on advanced physico-chemical processes for olive mill wastewater treatment, Separ. Purif. Technol., 179 (2017) 161–174.
  14. M. Hussein, M.I. Basheer, A. Manal, R.M. Maurice, P. Pratap, G.S. Renee, Treatment of olive mill wastewater using high power ultrasound (HPU) and electro-Fenton (EF) method, Chem. Eng. Process. – Process Intens., 131 (2018) 131–136.
  15. APHA/AWWA/WEF, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), USA, 2012.
  16. S. Weidner, R. Amarowicz, M. Karamac, G. Dabrowski, Phenolic acids in caryopese of two cultivars of wheat rye and triticale that display different resistance to preharvest sprouting, Eur. Food Res. Technol., 210 (1999) 109–113.
  17. A. Troszynska, E. Ciska, Phenolic compounds of seed coats of white and coloured varieties pea (Pisum sativum L.) and their total antioxidant activity, Czech, J. Food. Sci., 20 (2000) 15–22.
  18. M.A. El-Khateeb, M.A. Saad, H.I. Abdel-Shafy, F.A. Samhan, M.F. Shaaban, The feasibility of using non-woven fabric as packing material for wastewater treatment, Desal. Wat. Treat., 111 (2018) 94–100.
  19. M.A. El-Khateeb, B.A. Tantry, M. Abdul Hafeez, Shaik Rahiman, Application of phenol degrading microorganisms for the treatment of olive mill waste (OMW), The 2nd Saudi International Environmental Technologies Conference, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia, 10–12 November, 2014.
  20. G. Adams, A. Randall, J. Byung, Effect of ozonation on the biodegradability of substituted phenols, Wat. Res., 31 (1997) 2655–2663.
  21. I. A. Khdair, G. Abu-Rumman, Evaluation of the environmental pollution from olive mills wastewater, Fresenius. Environ. Bull., 26 (2017) 2537–2540.
  22. P.S. Rodis, V.T. Karathanos, A. Mantzavinou, Partitioning of olive oil antioxidants between oil and water phases, J. Agric. Food. Chem., 50 (2002) 596–601.
  23. A. Pavlidou, E. Anastasopoulou, M. Dassenakis, I. Hatzianestis, V. Paraskevopoulou, N. Simboura, E. Rousselaki, P. Drakopoulou, Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: a case study in Greece, Sci. Total. Environ., 497 (2014) 38–49.
  24. C. Bordons, A. Nunez-Reyes, Model based predictive control of an olive oil mill, J. Food. Eng., 84 (2008) 1–11.
  25. P. Chiaiese, P. Francesca, T. Filippo, L. Carmine, P. Gabriele, P. Antonino, F. Edgardo, Engineered tobacco and microalgae secreting the fungal laccase POXA1b reduce phenol content in olive oil mill wastewater, Enzyme. Microb. Technol., 49 (2011) 540–546.
  26. A.L. Skaltsounis, A. Argyropoulou, N. Aligiannis, N. Xynos, Recovery of high added value compounds from olive tree products and olive processing byproducts. In: Boskou, D. (Ed.), Olive, Olive Oil Bioactive Constituents. AOCS Press, Urbana, Illinois USA, 2015, pp. 333–356.
  27. S. Ayoub, K. Al-Absi, S. Al-Shdiefat, D. Al-Majali, D. Hijazean, Effect of olive mill wastewater landspreading on soil properties, olive tree performance and oil quality, Sci. Hortic., 175 (2014) 160–166.
  28. H. Annab, N. Fiol, I. Villaescusa, A. Essamri, A proposal for the sustainable treatment and valorization of olive mill wastes, J. Environ. Chem. Eng., 7 (2019) 102803.
  29. M.O.J. Azzam, Olive mills wastewater treatment using mixed adsorbents of volcanic tuff, natural clay and charcoal, J. Environ. Chem. Eng., 6 (2018) 2126–2136.
  30. M. Achak, L. Mandi, N. Ouazzani, Removal of organic pollutants and nutrients from olive mill wastewater by a sand filter, J. Environ. Manage., 90 (2009) 2771–2779.
  31. A.A. Zorpas, C.N. Costa, Combination of Fenton oxidation and composting for the treatment of the olive solid residue and the olive mile wastewater from the olive oil industry in Cyprus, Bioresour. Technol., 101 (2010) 7984–7987.
  32. G. Tchobanoglous, F. Burton, H.D. Stensel, Wastewater Engineering: treatment and Reuse, 4th ed.; McGraw-Hill: New York, 2003.
  33. Sh. Uemura, S. Suzuki, Y. Maruyama, H. Harada, Direct treatment of settled sewage by DHS reactors with different sizes of sponge support media, Int. J. Environ. Res., Winter, 6 (2012) 25–32.
  34. C.A. Bundy, D. Wua, M.-C. Jong, S.R. Edwards, Z.S. Ahammad, D W. Graham, Enhanced denitrification in downflow hanging sponge reactors for decentralised domestic wastewater treatment, Bioresour. Technol., 226 (2017) 1–8.
  35. G.A. Holtman, R. Haldenwang, P.J. Welz, Biological sand filter system treating winery effluent for effective reduction in organic load and pH neutralisation, J. Water. Process. Eng., 25 (2018) 118–127.