References

  1. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review), Desalination, 228 (2008) 10–29.
  2. M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and dlivering clean water. Comparison to present desalination practices: will it compete?, Electrochim. Acta, 55 (2010) 3845–3856.
  3. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci., 8 (2015) 2296–2319.
  4. M.A. Ahmed, S. Tewari, Capacitive deionization: processes, materials and state of the technology, J. Electroanal. Chem., 813 (2018) 173–192.
  5. G.X. Li, P.X. Hou, S.Y. Zhao, A flexible cotton-derived carbon sponge for high-performance capacitive deionization, Carbon, 101 (2016) 1–8.
  6. G. Wang, Q. Dong, T. Wu, Ultrasound-assisted preparation of electrospun carbon fiber/graphene electrodes for capacitive deionization: importance and unique role of electrical conductivity, Carbon, 103 (2016) 311–317.
  7. W. Kong, X. Duan, Y. Ge, Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination, Nano. Res., 9(2016) 2458–2466.
  8. H. Li, Composite of hierarchical interpenetrating 3d hollow carbon skeleton from lotus pollen and hexagonal MnO2 nanosheets for high-performance supercapacitors, J. Mater. Chem. A, 3 (2015) 9754–9762.
  9. X. Ye, Y. Zhu, Z. Tang, Z. Wan, C Jia, In-situ chemical reduction produced graphene paper for flexible supercapacitors with impressive capacitive performance, J. Power Sources, 360 (2017) 48–58.
  10. F. Duan, Y. Li, H. Cao, Capacitive deionization by ordered mesoporous carbon: electrosorption isotherm, kinetics, and the effect of modification, Desal. Wat. Treat, 52 (2014) 1388–1395.
  11. J. Zhang, J.H. Fang, J.L. Han, T.T. Yan, L.Y. Shi, D.S. Zhang, N, P, S co-doped hollow carbon polyhedra derived from MOF-based core–shell nanocomposites for capacitive deionization, J. Mater. Chem. A, 6 (2018) 15245–15252.
  12. J.L. Han, L.Y. Shi, T.T. Yan, J.P. Zhang, D.S. Zhang, Removal of ions from saline water using N, P co-doped 3D hierarchical carbon architectures via capacitive deionization, Environ. Sci. Nano, 5 (2018) 980–991.
  13. Z. Wang, T.T. Yan, G.R. Chen, L.Y. Shi, D.S. Zhang, High salt removal capacity of metal–organic gel derived porous carbon for capacitive deionization, ACS Sustainable Chem. Eng., 5 (2017) 11637–11644.
  14. H.Y. Duan, T.T. Yan, G.R. Chen, J.P. Zhang, L.Y. Shi, D.S. Zhang, A facile strategy for the fast construction of porous graphene frameworks and their enhanced electrosorption performance, Chem. Commun., 53 (2017) 7465–7468.
  15. H. Wang, T.T. Yan, L.Y. Shi, G.R. Chen, J.P. Zhang, D.S. Zhang, Creating nitrogen-doped hollow Multiyolk@shell carbon as high performance electrodes for flow-through deionization capacitors, ACS Sustainable Chem. Eng., 5 (2017) 3329−3338.
  16. S. Jeon, H. Park, J. Yeo, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy Environ. Sci., 6 (2013) 1471–1475.
  17. J.Y. Lee, S.J. Seo, S.H. Yun, Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI), Water Res., 45 (2011) 53–75.
  18. F.J. Álvarez-González, J.A. Martín-Ramos, J. Díaz, Energyrecovery optimization of an experimental cdi desalination system, IEEE Trans. Ind. Electron., 63 (2016) 1586–1597.
  19. A.M. Pernía, J.G. Norniella, J.A. Martín-Ramos, Up–down converter for energy recovery in a CDI desalination system, IEEE Trans. Ind. Electron., 27 (2012) 3257–3265.
  20. J. Kang, T. Kim, H. Shin, Direct energy recovery system for membrane capacitive deionization, Desalination, 398 (2016) 144–150.
  21. T. Wu, G. Wang, Q. Dong, Starch derived porous carbon nanosheets for high-performance photovoltaic capacitive deionization, Environ. Sci. Technol., 51 (2017) 9244–9251.
  22. D. Xu, Y. Tong, T. Yan, N, P-co-doped meso-/microporous carbon derived from biomass materials via a dual-activation strategy as high-performance electrodes for deionization capacitors, ACS Sustainable Chem. Eng., 5 (2017) 5810–5819.
  23. J.J. Lado, R.L. Zornitta, F.A. Calvi, M.I. Tejedor-Tejedor, Study of sugar cane bagasse fly ash as electrode material for capacitive deionization, J. Anal. Appl. Pyrolysis, 120 (2016) 389–398.
  24. J.J. Lado, R.L. Zornitta, F.A. Calvi, M. Martins, M.A. Anderson, F.G. Nogueira, L.A. Ruotolo, Enhanced capacitive deionization desalination provided by chemical activation of sugar cane bagasse fly ash electrodes, J. Anal. Appl. Pyrolysis, 126 (2017) 143–153.
  25. C.H. Hou, N.L. Liu, H.C. His, Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes, Chemosphere, 141 (2015) 71–79.
  26. Y. Liu, Z. Xiao, Y. Liu, Biowaste derived 3d honeycomblike porous carbon with binary-heteroatom doping for high performance flexible solid-state supercapacitors, J. Mater. Chem. A, 6 (2017) 160–166.
  27. N. Rambabu, R. Azargohar, A.K. Dalai, Evaluation and comparison of enrichment efficiency of physical/chemical activations and functionalized activated carbons derived from fluid petroleum coke for environmental applications, Fuel Process Technol., 106 (2013) 501–510.
  28. E. Raymundo-Piñero, P. Cacciaguerra, T.D. Cazorla-Amorós, KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon, 43 (2005) 786–795.
  29. M.A Lillo-Ródenas, D. Lozano-Castelló, D. Cazorla-Amorós, Preparation of activated carbons from spanish anthracite. II. activation by NaOH, Carbon, 39 (2001) 751–759.
  30. C. Saka, BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2, J. Anal. Appl. Pyrolysis, 95 (2012) 21–24.
  31. M. Jagtoyen, F. Derbyshire, Activated carbons from yellow poplar and white oak by H3PO4 activation, Carbon, 36 (1998) 1085–1097.
  32. A.M. Dehkhoda, E. Gyenge, N. Ellis, A novel method to tailor the porous structure of KOH-activated biochar and its application in capacitive deionization and energy storage, Biomass Bioenergy, 87 (2016) 107–121.
  33. Y. Gong, D. Li, C. Luo, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors, Green Chem., 19 (2017) 4132–4140.
  34. G. Wang, C. Pan, L. Wang, Q. Dong, Activated carbon nanofiber webs made by electrospinning for capacitive deionization, Electrochim. Acta., 69 (2012) 65–70.
  35. Y. Zhao, X.M. Hu, B.H. Jiang, L. Li, Optimization of the operational parameters for desalination with response surface methodology during a capacitive deionization process, Desalination, 336 (2014) 64–71.
  36. P.M. Biesheuvel, B.V. Limpt, A. Wal, Dynamic, adsorption/desorption process model for capacitive deionization, J. Phys. Chem. C, 113 (2009) 5636–5640.
  37. S.T. Jackson, R.G. Nuzzo, Determining hybridization differences for amorphous carbon from the XPS C 1s envelope, Appl. Surf. Sci., 90 (1995) 195–203.
  38. Y. Liu, X. Xu, M. Wang, T. Lu, Metal-organic frameworkderived porous carbon polyhedra for highly efficient capacitive deionization, Chem. Commun., 51 (2015) 12020–12023.
  39. P. Biesheuvel, S. Porada, M. Levi, M. Bazant, Attractive forces in microporous carbon electrodes for capacitive deionization, J. Solid State Electrochem., 18 (2014) 1365–1376.