References
- Y. Oren, Capacitive deionization (CDI) for desalination
and water treatment-past, present and future (a review),
Desalination, 228 (2008) 10–29.
- M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization
as an electrochemical means of saving energy and dlivering
clean water. Comparison to present desalination practices: will
it compete?, Electrochim. Acta, 55 (2010) 3845–3856.
- M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, Water desalination
via capacitive deionization: what is it and what can we expect
from it?, Energy Environ. Sci., 8 (2015) 2296–2319.
- M.A. Ahmed, S. Tewari, Capacitive deionization: processes,
materials and state of the technology, J. Electroanal. Chem., 813
(2018) 173–192.
- G.X. Li, P.X. Hou, S.Y. Zhao, A flexible cotton-derived carbon
sponge for high-performance capacitive deionization, Carbon,
101 (2016) 1–8.
- G. Wang, Q. Dong, T. Wu, Ultrasound-assisted preparation of
electrospun carbon fiber/graphene electrodes for capacitive
deionization: importance and unique role of electrical
conductivity, Carbon, 103 (2016) 311–317.
- W. Kong, X. Duan, Y. Ge, Holey graphene hydrogel with
in-plane pores for high-performance capacitive desalination,
Nano. Res., 9(2016) 2458–2466.
- H. Li, Composite of hierarchical interpenetrating 3d hollow
carbon skeleton from lotus pollen and hexagonal MnO2
nanosheets for high-performance supercapacitors, J. Mater.
Chem. A, 3 (2015) 9754–9762.
- X. Ye, Y. Zhu, Z. Tang, Z. Wan, C Jia, In-situ chemical reduction
produced graphene paper for flexible supercapacitors with
impressive capacitive performance, J. Power Sources, 360 (2017)
48–58.
- F. Duan, Y. Li, H. Cao, Capacitive deionization by ordered
mesoporous carbon: electrosorption isotherm, kinetics, and the
effect of modification, Desal. Wat. Treat, 52 (2014) 1388–1395.
- J. Zhang, J.H. Fang, J.L. Han, T.T. Yan, L.Y. Shi, D.S. Zhang, N, P,
S co-doped hollow carbon polyhedra derived from MOF-based
core–shell nanocomposites for capacitive deionization, J. Mater.
Chem. A, 6 (2018) 15245–15252.
- J.L. Han, L.Y. Shi, T.T. Yan, J.P. Zhang, D.S. Zhang, Removal
of ions from saline water using N, P co-doped 3D hierarchical
carbon architectures via capacitive deionization, Environ. Sci.
Nano, 5 (2018) 980–991.
- Z. Wang, T.T. Yan, G.R. Chen, L.Y. Shi, D.S. Zhang, High salt
removal capacity of metal–organic gel derived porous
carbon for capacitive deionization, ACS Sustainable Chem.
Eng., 5 (2017) 11637–11644.
- H.Y. Duan, T.T. Yan, G.R. Chen, J.P. Zhang, L.Y. Shi, D.S. Zhang,
A facile strategy for the fast construction of porous graphene
frameworks and their enhanced electrosorption performance,
Chem. Commun., 53 (2017) 7465–7468.
- H. Wang, T.T. Yan, L.Y. Shi, G.R. Chen, J.P. Zhang, D.S. Zhang,
Creating nitrogen-doped hollow Multiyolk@shell carbon as
high performance electrodes for flow-through deionization
capacitors, ACS Sustainable Chem. Eng., 5 (2017) 3329−3338.
- S. Jeon, H. Park, J. Yeo, Desalination via a new membrane
capacitive deionization process utilizing flow-electrodes,
Energy Environ. Sci., 6 (2013) 1471–1475.
- J.Y. Lee, S.J. Seo, S.H. Yun, Preparation of ion exchanger layered
electrodes for advanced membrane capacitive deionization
(MCDI), Water Res., 45 (2011) 53–75.
- F.J. Álvarez-González, J.A. Martín-Ramos, J. Díaz, Energyrecovery
optimization of an experimental cdi desalination
system, IEEE Trans. Ind. Electron., 63 (2016) 1586–1597.
- A.M. Pernía, J.G. Norniella, J.A. Martín-Ramos, Up–down
converter for energy recovery in a CDI desalination system,
IEEE Trans. Ind. Electron., 27 (2012) 3257–3265.
- J. Kang, T. Kim, H. Shin, Direct energy recovery system for
membrane capacitive deionization, Desalination, 398 (2016)
144–150.
- T. Wu, G. Wang, Q. Dong, Starch derived porous carbon
nanosheets for high-performance photovoltaic capacitive
deionization, Environ. Sci. Technol., 51 (2017) 9244–9251.
- D. Xu, Y. Tong, T. Yan, N, P-co-doped meso-/microporous
carbon derived from biomass materials via a dual-activation
strategy as high-performance electrodes for deionization
capacitors, ACS Sustainable Chem. Eng., 5 (2017) 5810–5819.
- J.J. Lado, R.L. Zornitta, F.A. Calvi, M.I. Tejedor-Tejedor, Study of
sugar cane bagasse fly ash as electrode material for capacitive
deionization, J. Anal. Appl. Pyrolysis, 120 (2016) 389–398.
- J.J. Lado, R.L. Zornitta, F.A. Calvi, M. Martins, M.A. Anderson,
F.G. Nogueira, L.A. Ruotolo, Enhanced capacitive deionization
desalination provided by chemical activation of sugar cane
bagasse fly ash electrodes, J. Anal. Appl. Pyrolysis, 126 (2017)
143–153.
- C.H. Hou, N.L. Liu, H.C. His, Highly porous activated carbons
from resource-recovered Leucaena leucocephala wood as
capacitive deionization electrodes, Chemosphere, 141 (2015)
71–79.
- Y. Liu, Z. Xiao, Y. Liu, Biowaste derived 3d honeycomblike
porous carbon with binary-heteroatom doping for high
performance flexible solid-state supercapacitors, J. Mater.
Chem. A, 6 (2017) 160–166.
- N. Rambabu, R. Azargohar, A.K. Dalai, Evaluation and
comparison of enrichment efficiency of physical/chemical
activations and functionalized activated carbons derived from
fluid petroleum coke for environmental applications, Fuel
Process Technol., 106 (2013) 501–510.
- E. Raymundo-Piñero, P. Cacciaguerra, T.D. Cazorla-Amorós,
KOH and NaOH activation mechanisms of multiwalled carbon
nanotubes with different structural organisation, Carbon, 43
(2005) 786–795.
- M.A Lillo-Ródenas, D. Lozano-Castelló, D. Cazorla-Amorós,
Preparation of activated carbons from spanish anthracite. II.
activation by NaOH, Carbon, 39 (2001) 751–759.
- C. Saka, BET, TG–DTG, FT-IR, SEM, iodine number analysis and
preparation of activated carbon from acorn shell by chemical
activation with ZnCl2, J. Anal. Appl. Pyrolysis, 95 (2012) 21–24.
- M. Jagtoyen, F. Derbyshire, Activated carbons from yellow
poplar and white oak by H3PO4 activation, Carbon, 36 (1998)
1085–1097.
- A.M. Dehkhoda, E. Gyenge, N. Ellis, A novel method to
tailor the porous structure of KOH-activated biochar and its
application in capacitive deionization and energy storage,
Biomass Bioenergy, 87 (2016) 107–121.
- Y. Gong, D. Li, C. Luo, Highly porous graphitic biomass carbon
as advanced electrode materials for supercapacitors, Green
Chem., 19 (2017) 4132–4140.
- G. Wang, C. Pan, L. Wang, Q. Dong, Activated carbon nanofiber
webs made by electrospinning for capacitive deionization,
Electrochim. Acta., 69 (2012) 65–70.
- Y. Zhao, X.M. Hu, B.H. Jiang, L. Li, Optimization of the
operational parameters for desalination with response surface
methodology during a capacitive deionization process,
Desalination, 336 (2014) 64–71.
- P.M. Biesheuvel, B.V. Limpt, A. Wal, Dynamic, adsorption/desorption process model for capacitive deionization, J. Phys.
Chem. C, 113 (2009) 5636–5640.
- S.T. Jackson, R.G. Nuzzo, Determining hybridization differences
for amorphous carbon from the XPS C 1s envelope, Appl. Surf.
Sci., 90 (1995) 195–203.
- Y. Liu, X. Xu, M. Wang, T. Lu, Metal-organic frameworkderived
porous carbon polyhedra for highly efficient capacitive
deionization, Chem. Commun., 51 (2015) 12020–12023.
- P. Biesheuvel, S. Porada, M. Levi, M. Bazant, Attractive forces
in microporous carbon electrodes for capacitive deionization, J.
Solid State Electrochem., 18 (2014) 1365–1376.