References

  1. R. Bejankiwar, J.A. Lalman, R. Seth, N. Biswas, Electrochemical degradation of 1, 2-dichloroethane (DCA) in a synthetic groundwater medium using stainless-steel electrodes, Water. Res., 39 (2005) 4715–4724.
  2. M. Vilve, S. Vilhunen, M. Vepsäläinen, T.A. Kurniawan, N. Lehtonen, H. Isomäki, M. Sillanpää, Degradation of 1, 2-dichloroethane from wash water of ion-exchange resin using Fenton’s oxidation, Environ. Sci. Pollut. Res.Int., 17 (2010) 875–884.
  3. X. Liu, B.P. Vellanki, B. Batchelor, A. Abdel-Wahab, Degradation of 1, 2-dichloroethane with advanced reduction processes (ARPs): effects of process variables and mechanisms, Chem. Eng. J., 237 (2014) 300–307.
  4. S. De Wildeman, H. Nollet, H. Van Langenhove, W. Verstraete, Reductive biodegradation of 1, 2-dichloroethane by methanogenic granular sludge in lab-scale UASB reactors, Adv. Environ. Res., 6 (2001) 17–27.
  5. S. Eydivand, M. Nikazar, Degradation of 1,2-dichloroethane in simulated wastewater solution: a comprehensive study by photocatalysis using TiO2 and ZnO nanoparticles, Chem. Eng. Commun., 202 (2015) 102–111.
  6. Y.H. Lin, W.C. Hung, Y.C. Chen, H. Chu, Photocatalytic degradation of 1, 2-dichloroethane by V/TiO2: the mechanism of photocatalytic reaction and byproduct, Aerosol. Air. Qual. Res., 14 (2014) 280–292.
  7. H. Pham, N. Boon, M. Marzorati, W. Verstraete, Enhanced removal of 1, 2-dichloroethane by anodophilic microbial consortia, Water. Res., 43 (2009) 2936–2946.
  8. A. Stasinakis, Use of selected advanced oxidation processes (AOPs) for wastewater treatment-a mini review, Global. Nest. J., 10 (2008) 376–385.
  9. N. Biglarijoo, S.A. Mirbagheri, M. Ehteshami, S.M. Ghaznavi, Optimization of Fenton process using response surface methodology and analytic hierarchy process for landfill leachate treatment, Process. Saf. Environ., 104 (2016) 150–160.
  10. S. Sarmah, A. Kumar, Photocatalytic activity of polyaniline-TiO2 nanocomposites, Indian. J. Phys., 85 (2011) 713.
  11. S.T. Martin, H. Herrmann, W. Choi, M.R. Hoffmann, Timeresolved microwave conductivity. Part 1. TiO2 photoreactivity and size quantization, J. Chem. Soc. Faraday. T., 90 (1994) 3315–3322.
  12. A. Dawson, P.V. Kamat, Semiconductor metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles, J. Phys. Chem. B., 105 (2001) 960–966.
  13. C.H. Hung, C. Yuan, H.W. Li, Photodegradation of diethyl phthalate with PANi/CNT/TiO2 immobilized on glass plate irradiated with visible light and simulated sunlight effect of synthesized method and pH, J. Hazard. Mater., 322 (2017) 243–253.
  14. M.R. Karim, H.W. Lee, I.W. Cheong, S.M. Park, W. Oh, J.H. Yeum, Conducting polyaniline-titanium dioxide nanocomposites prepared by inverted emulsion polymerization, Polym. Composite., 31 (2010) 83–88.
  15. H. Xia, Q. Wang, Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites, Chem. Mater., 14 (2002) 2158–2165.
  16. D.C. Schnitzler, A.J. Zarbin, Organic/inorganic hybrid materials formed from TiO2 nanoparticles and polyaniline, J. Braz. Chem. Soc., 15 (2004) 378–384.
  17. L. Zhang, M. Wan, Polyaniline/TiO2 composite nanotubes, J. Phys. Chem. B., 107 (2003) 6748–6753.
  18. L. Zhang, P. Liu, Z. Su, Preparation of PANI-TiO2 nanocomposites and their solid-phase photocatalytic degradation, Polym. Degrad. Stab., 91 (2006) 2213–2219.
  19. Y. Lin, D. Li, J. Hu, G. Xiao, J. Wang, W. Li, X. Fu, Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite, J. Phys. Chem. C., 116 (2012) 5764–5772.
  20. D.A. Athanasiou, G.E. Romanos, P. Falaras, Design and optimization of a photocatalytic reactor for water purification combining optical fiber and membrane technologies, Chem. Eng. J., 305 (2016) 92–103.
  21. H. Zeghioud, N. Khellaf, H. Djelal, A. Amrane, M. Bouhelassa, Photocatalytic reactors dedicated to the degradation of hazardous organic pollutants: kinetics, mechanistic aspects, and design-a review, Chem. Eng. Commun., 203 (2016) 1415–1431.
  22. A. Khataee, M. Fathinia, S. Aber, M. Zarei, Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: intermediates identification, J. Hazard. Mater., 181 (2010) 886–897.
  23. P.S. Mukherjee, A.K. Ray, Major challenges in the design of a large-scale photocatalytic reactor for water treatment, Chem. Eng. Technol., 22 (1999) 253–260.
  24. J. Fernández, J. Kiwi, J. Baeza, J. Freer, C. Lizama, H. Mansilla, Orange II photocatalysis on immobilised TiO2: effect of the pH and H2O2, Appl. Catal. B-Environ., 48 (2004) 205–211.
  25. A.Y. Shan, T.I.M. Ghazi, S.A. Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review, Appl. Catal., A., 389 (2010) 1–8.
  26. M. Mohammadi, S. Sabbaghi, Photo-catalytic degradation of 2, 4-DCP wastewater using MWCNT/TiO2 nano-composite activated by UV and solar light, Environ. Nanotechnol. Monit. Manage., 1 (2014) 24–29.
  27. N. Biglarijoo, S.A. Mirbagheri, M. Bagheri, M. Ehteshami, Assessment of effective parameters in landfill leachate treatment and optimization of the process using neural network, genetic algorithm and response surface methodology, Process. Saf. Environ., 106 (2017) 89–103.
  28. A. Khataee, M.N. Pons, O. Zahraa, Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure, J. Hazard. Mater., 168 (2009) 451–457.
  29. S. Sabbaghi, M. Mohammadi, H. Ebadi, Photocatalytic degradation of benzene wastewater using PANI-TiO2 nanocomposite under UV and solar light radiation, J. Environ. Eng., 142 (2015) 05015003.
  30. V.A. Sakkas, M.A. Islam, C. Stalikas, T.A. Albanis, Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation, J. Hazard. Mater., 175 (2010) 33–44.
  31. W. Zheng, M. Angelopoulos, A.J. Epstein, A. MacDiarmid, Experimental evidence for hydrogen bonding in polyaniline: mechanism of aggregate formation and dependency on oxidation state, Macromolecules, 30 (1997) 2953–2955.
  32. Z. Niu, Z. Yang, Z. Hu, Y. Lu, C.C. Han, Polyaniline–silica composite conductive capsules and hollow spheres, Adv. Funct. Mater., 13 (2003) 949–954.
  33. P.R. Somani, R. Marimuthu, U. Mulik, S. Sainkar, D. Amalnerkar, High piezoresistivity and its origin in conducting polyaniline/TiO2 composites, Synth. Met., 106 (1999) 45–52.
  34. A.G. Yavuz, A. Gök, Preparation of TiO2/PANI composites in the presence of surfactants and investigation of electrical properties, Synth. Met., 157 (2007) 235–242.
  35. T.C. Mo, H.W. Wang, S.Y. Chen, Y.C. Yeh, Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites, Ceram. Int., 34 (2008) 1767–1771.
  36. D. Chen, F. Li, A.K. Ray, External and internal mass transfer effect on photocatalytic degradation, Catal. Today., 66 (2001) 475–485.