References

  1. E. Curmi, K. Richards, R. Fenner, J.M. Allwood, G.M. Kopec, B. Bajželj, An integrated representation of the services provided by global water resources, J. Environ. Manage., 129 (2013) 456–462.
  2. I.E.M. De Graaf, L.P.H. Van Beek, Y. Wada, M.F.P. Bierkens, Advances in Water Resources Dynamic attribution of global water demand to surface water and groundwater resources : Effects of abstractions and return flows on river discharges, Adv. Water Resour., 64 (2014) 21–33.
  3. N. Dhakal, S.G.S. Rodriguez, J.C. Schippers, M.D. Kennedy, Perspectives and challenges for desalination in developing countries, IDA J. Desal. Water Reuse., 6(1) (2014) 10–14.
  4. A. Alkaisi, R. Mossad, A. Sharifian-Barforoush, A review of the water desalination systems integrated with renewable energy, Energy Procedia., 110 (2017) 268–274.
  5. Desal Data (2018) accessed on: www. DesalData.com
  6. H.C. Flemming, G. Schaule, T. Griebe, J. Schmitt, A. Tamachkiarowa, Biofouling - the Achilles heel of membrane processes, Desalination, 113 (1997) 215–225.
  7. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marĩas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301–310.
  8. A. Matin, Z. Khan, S.M.J. Zaidi, M.C. Boyce, Biofouling in reverse osmosis membranes for seawater desalination: Phenomena and prevention, Desalination, 281 (2011) 1–16.
  9. R. Mahadeva, G. Manik, O.P. Verma, S. Sinha, Modelling and simulation of desalination process using artificial neural network : a review, Desal. Water Treat., 122 (2018) 351–364.
  10. M.E. El-Hawary, Artificial neural networks and possible applications to desalination, Desalination, 92 (1993) 125–147.
  11. Z.V.P. Murthy, M.M. Vora, Prediction of reverse osmosis performance using artificial neural network, Indian J. Chem. Technol., 11 (2004) 108–115.
  12. C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination, 216 (2007) 1–76.
  13. K.A. Al-Shayji, Modeling simulation and optimization of large-scale commercial desalination plants (Doctoral dissertation), 1998.
  14. H. Niemi, A. Bulsari, S. Palosaari, Simulation of membrane separation by neural networks, J. Membr. Sci., 102 (1995) 185–191.
  15. M.M. Jafar, A. Zilouchian, Adaptive receptive fields for radial basis functions, Desalination, 135 (2001) 83–91.
  16. K.A. Al-Shayji, Y.A. Liu, Predictive modeling of large-scale commercial water desalination plants: Data-based neural network and model-based process simulation, Ind. Eng. Chem. Res., 41 (2002) 6460–6474.
  17. A. Abbas, N. Al-Bastaki, Modeling of an RO water desalination unit using neural networks, Chem. Eng. J., 114 (2005) 139–143.
  18. Y. Zhao, J.S. Taylor, S. Chellam, Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks, J. Membr. Sci., 263 (2005) 38–46.
  19. A. Al-Alawi, S.M. Al-Alawi, S.M. Islam, Predictive control of an integrated PV-diesel water and power supply system using an artificial neural network, Renew. Energy, 32 (2007) 1426–1439.
  20. Y.G. Lee, Y.S. Lee, J.J. Jeon, S. Lee, D.R. Yang, I.S. Kim, J.H. Kim, Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant, Desalination, 247 (2009) 180–189.
  21. D. Libotean, J. Giralt, F. Giralt, R. Rallo, T. Wolfe, Y. Cohen, Neural network approach for modeling the performance of reverse osmosis membrane desalting, J. Membr. Sci., 326 (2009) 408–419.
  22. M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network modeling and response surface methodology of desalination by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
  23. A. Moradi, V. Mojarradi, M. Sarcheshmehpour, Prediction of RO membrane performances by use of artificial neural network and using the parameters of a complex mathematical model, Res. Chem. Intermed., 39 (2013) 3235–3249.
  24. M.C. Garg, H. Joshi, A new approach for optimization of small-scale RO membrane using artificial groundwater, Environ. Technol. (UK), 35 (2014) 2988–2999.
  25. M. Barello, D. Manca, R. Patel, I.M. Mujtaba, Neural network based correlation for estimating water permeability constant in RO desalination process under fouling, Desalination, 345 (2014) 101–111.
  26. A.M. Aish, H.A. Zaqoot, S.M. Abdeljawad, Artificial neural network approach for predicting reverse osmosis desalination plants performance in the Gaza Strip, Desalination, 367 (2015) 240–247.
  27. A. Salgado-Reyna, E. Soto-Regalado, R. Gómez-González, F.J. Cerino-Córdova, R.B. García-Reyes, M.T. Garza-González, M.M. Alcalá-Rodríguez, Artificial neural networks for modeling the reverse osmosis unit in a wastewater pilot treatment plant, Desal. Water Treat., 53 (2015) 1177–1187.
  28. S.S. Madaeni, M. Shiri, A.R. Kurdian, Modeling, optimization, and control of reverse osmosis water treatment in kazeroon power plant using neural network, Chem. Eng. Commun., 202 (2015) 6–14.
  29. E.S. Salami, M. Ehetshami, A. Karimi-Jashni, M. Salari, S. Nikbakht Sheibani, A. Ehteshami, A mathematical method and artificial neural network modeling to simulate osmosis membrane’s performance, Model. Earth Syst. Environ., 2 (2016) 207.
  30. F. Iranmanesh, A. Moradi, M. Rafizadeh, Implementation of radial basic function networks for the prediction of RO membrane performances by using a complex transport model, Desal. Water Treat., 57 (2016) 20307–20317.
  31. P. Cabrera, J.A. Carta, J. González, G. Melián, Artificial neural networks applied to manage the variable operation of a simple seawater reverse osmosis plant, Desalination, 416 (2017) 140–156.
  32. P. Cabrera, J.A. Carta, J. González, G. Melián, Wind-driven SWRO desalination prototype with and without batteries: A performance simulation using machine learning models, Desalination, 435 (2018) 77–96.
  33. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-water-environment nexus underpinning future desalination sustainability, Desalination, 413 (2017) 52–64.
  34. O.P. Verma, G. Manik, S.K. Sethi, A comprehensive review of renewable energy source on energy optimization of black liquor in MSE using steady and dynamic state modeling, simulation and control, Renew. Sustain. Energy Rev., 100 (2019) 90–109.
  35. I. Alatiqi, H. Ettouney, H. El-Dessouky, Process control in water desalination industry: An overview, Desalination, 126 (1999) 15–32.
  36. E.A. Roehl, D.A. Ladner, R.C. Daamen, J.B. Cook, J. Safarik, D.W. Phipps, P. Xie, Modeling fouling in a large RO system with artificial neural networks, J. Membr. Sci., 552 (2018) 95–106.
  37. F. Salehi, S.M.A. Razavi, Modeling of waste brine nanofiltration process using artificial neural network and adaptive neuro-fuzzy inference system, Desal. Water Treat., 57 (2016) 14369–14378.
  38. A. Ruiz-García, J. Feo-García, Operating and maintenance cost in seawater reverse osmosis desalination plants. Artificial neural network based model, Desal. Water Treat., 73 (2017) 73–79.
  39. D. Violeau, B.D. Rogers, Smoothed particle hydrodynamics (SPH) for free-surface flows: Past, present and future, J. Hydraul. Res., 54 (2016) 1–26.
  40. I. Zisis, From Continuum Mechanics to Smoothed Particle Hydrodynamics for Shocks through Inhomogeneous Media, 2017.
  41. Q. Hou, L.X. Zhang, A.S. Tijsseling, A.C.H. Kruisbrink, Rapid filling of pipelines with the SPH particle method, Procedia Eng., 31 (2012) 38–43.
  42. S.P. Korzilius, Second derivatives, particle collisions and travelling liquid slugs within smoothed particle hydrodynamics (Doctoral dissertation), 2016.