References
- E. Curmi, K. Richards, R. Fenner, J.M. Allwood, G.M. Kopec, B.
Bajželj, An integrated representation of the services provided
by global water resources, J. Environ. Manage., 129 (2013) 456–462.
- I.E.M. De Graaf, L.P.H. Van Beek, Y. Wada, M.F.P. Bierkens,
Advances in Water Resources Dynamic attribution of global
water demand to surface water and groundwater resources :
Effects of abstractions and return flows on river discharges,
Adv. Water Resour., 64 (2014) 21–33.
- N. Dhakal, S.G.S. Rodriguez, J.C. Schippers, M.D. Kennedy,
Perspectives and challenges for desalination in developing
countries, IDA J. Desal. Water Reuse., 6(1) (2014) 10–14.
- A. Alkaisi, R. Mossad, A. Sharifian-Barforoush, A review of
the water desalination systems integrated with renewable
energy, Energy Procedia., 110 (2017) 268–274.
- Desal Data (2018) accessed on: www. DesalData.com
- H.C. Flemming, G. Schaule, T. Griebe, J. Schmitt, A. Tamachkiarowa,
Biofouling - the Achilles heel of membrane processes,
Desalination, 113 (1997) 215–225.
- M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J.
Marĩas, A.M. Mayes, Science and technology for water purification
in the coming decades, Nature, 452 (2008) 301–310.
- A. Matin, Z. Khan, S.M.J. Zaidi, M.C. Boyce, Biofouling in
reverse osmosis membranes for seawater desalination: Phenomena
and prevention, Desalination, 281 (2011) 1–16.
- R. Mahadeva, G. Manik, O.P. Verma, S. Sinha, Modelling and
simulation of desalination process using artificial neural network
: a review, Desal. Water Treat., 122 (2018) 351–364.
- M.E. El-Hawary, Artificial neural networks and possible applications
to desalination, Desalination, 92 (1993) 125–147.
- Z.V.P. Murthy, M.M. Vora, Prediction of reverse osmosis performance
using artificial neural network, Indian J. Chem.
Technol., 11 (2004) 108–115.
- C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination, 216
(2007) 1–76.
- K.A. Al-Shayji, Modeling simulation and optimization of
large-scale commercial desalination plants (Doctoral dissertation),
1998.
- H. Niemi, A. Bulsari, S. Palosaari, Simulation of membrane
separation by neural networks, J. Membr. Sci., 102 (1995) 185–191.
- M.M. Jafar, A. Zilouchian, Adaptive receptive fields for radial
basis functions, Desalination, 135 (2001) 83–91.
- K.A. Al-Shayji, Y.A. Liu, Predictive modeling of large-scale
commercial water desalination plants: Data-based neural network
and model-based process simulation, Ind. Eng. Chem.
Res., 41 (2002) 6460–6474.
- A. Abbas, N. Al-Bastaki, Modeling of an RO water desalination
unit using neural networks, Chem. Eng. J., 114 (2005) 139–143.
- Y. Zhao, J.S. Taylor, S. Chellam, Predicting RO/NF water quality
by modified solution diffusion model and artificial neural
networks, J. Membr. Sci., 263 (2005) 38–46.
- A. Al-Alawi, S.M. Al-Alawi, S.M. Islam, Predictive control of an
integrated PV-diesel water and power supply system using an
artificial neural network, Renew. Energy, 32 (2007) 1426–1439.
- Y.G. Lee, Y.S. Lee, J.J. Jeon, S. Lee, D.R. Yang, I.S. Kim, J.H. Kim,
Artificial neural network model for optimizing operation of a
seawater reverse osmosis desalination plant, Desalination, 247
(2009) 180–189.
- D. Libotean, J. Giralt, F. Giralt, R. Rallo, T. Wolfe, Y. Cohen,
Neural network approach for modeling the performance of
reverse osmosis membrane desalting, J. Membr. Sci., 326 (2009)
408–419.
- M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network
modeling and response surface methodology of desalination
by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
- A. Moradi, V. Mojarradi, M. Sarcheshmehpour, Prediction of
RO membrane performances by use of artificial neural network
and using the parameters of a complex mathematical
model, Res. Chem. Intermed., 39 (2013) 3235–3249.
- M.C. Garg, H. Joshi, A new approach for optimization of
small-scale RO membrane using artificial groundwater, Environ.
Technol. (UK), 35 (2014) 2988–2999.
- M. Barello, D. Manca, R. Patel, I.M. Mujtaba, Neural network
based correlation for estimating water permeability constant
in RO desalination process under fouling, Desalination, 345
(2014) 101–111.
- A.M. Aish, H.A. Zaqoot, S.M. Abdeljawad, Artificial neural
network approach for predicting reverse osmosis desalination
plants performance in the Gaza Strip, Desalination, 367 (2015)
240–247.
- A. Salgado-Reyna, E. Soto-Regalado, R. Gómez-González, F.J.
Cerino-Córdova, R.B. García-Reyes, M.T. Garza-González,
M.M. Alcalá-Rodríguez, Artificial neural networks for modeling
the reverse osmosis unit in a wastewater pilot treatment
plant, Desal. Water Treat., 53 (2015) 1177–1187.
- S.S. Madaeni, M. Shiri, A.R. Kurdian, Modeling, optimization,
and control of reverse osmosis water treatment in kazeroon
power plant using neural network, Chem. Eng. Commun., 202
(2015) 6–14.
- E.S. Salami, M. Ehetshami, A. Karimi-Jashni, M. Salari, S. Nikbakht
Sheibani, A. Ehteshami, A mathematical method and
artificial neural network modeling to simulate osmosis membrane’s
performance, Model. Earth Syst. Environ., 2 (2016) 207.
- F. Iranmanesh, A. Moradi, M. Rafizadeh, Implementation of
radial basic function networks for the prediction of RO membrane
performances by using a complex transport model,
Desal. Water Treat., 57 (2016) 20307–20317.
- P. Cabrera, J.A. Carta, J. González, G. Melián, Artificial neural
networks applied to manage the variable operation of a simple
seawater reverse osmosis plant, Desalination, 416 (2017)
140–156.
- P. Cabrera, J.A. Carta, J. González, G. Melián, Wind-driven
SWRO desalination prototype with and without batteries:
A performance simulation using machine learning models,
Desalination, 435 (2018) 77–96.
- M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-water-environment
nexus underpinning future desalination sustainability,
Desalination, 413 (2017) 52–64.
- O.P. Verma, G. Manik, S.K. Sethi, A comprehensive review
of renewable energy source on energy optimization of black
liquor in MSE using steady and dynamic state modeling, simulation
and control, Renew. Sustain. Energy Rev., 100 (2019)
90–109.
- I. Alatiqi, H. Ettouney, H. El-Dessouky, Process control in
water desalination industry: An overview, Desalination, 126
(1999) 15–32.
- E.A. Roehl, D.A. Ladner, R.C. Daamen, J.B. Cook, J. Safarik,
D.W. Phipps, P. Xie, Modeling fouling in a large RO system
with artificial neural networks, J. Membr. Sci., 552 (2018)
95–106.
- F. Salehi, S.M.A. Razavi, Modeling of waste brine nanofiltration
process using artificial neural network and adaptive
neuro-fuzzy inference system, Desal. Water Treat., 57 (2016)
14369–14378.
- A. Ruiz-García, J. Feo-García, Operating and maintenance cost
in seawater reverse osmosis desalination plants. Artificial neural
network based model, Desal. Water Treat., 73 (2017) 73–79.
- D. Violeau, B.D. Rogers, Smoothed particle hydrodynamics
(SPH) for free-surface flows: Past, present and future, J.
Hydraul. Res., 54 (2016) 1–26.
- I. Zisis, From Continuum Mechanics to Smoothed Particle
Hydrodynamics for Shocks through Inhomogeneous Media,
2017.
- Q. Hou, L.X. Zhang, A.S. Tijsseling, A.C.H. Kruisbrink, Rapid
filling of pipelines with the SPH particle method, Procedia
Eng., 31 (2012) 38–43.
- S.P. Korzilius, Second derivatives, particle collisions and travelling
liquid slugs within smoothed particle hydrodynamics
(Doctoral dissertation), 2016.