References
- S.D. Richardson, A.T. Thomas, Water analysis: emerging contaminants
and current issues, Anal. Chem., 90(1) (2018) 398–428.
- N. Rahmanian, S.H.B. Ali, M. Homayoonfard, N.J. Ali, M.
Rahan, A.S. Nizami, Analysis of physiochemical parameters
to evaluate the drinking water quality in the State of Perak,
Malaysia, J. Chem., 8 (2015) 1–10.
- K. Brindha, R. Rajesh, R. Murugan, L. Elango, Fluoride contamination
in groundwater in parts of Nalgonda District,
Andhra Pradesh, India, Environ. Monit. Assess., 172
(2011) 481–492.
- M.A. Seiler, D. Jensen, U. Neist, U.K. Deister, F. Schmitz, Validation
data for the determination of perchlorate in water using
ion chromatography with suppressed conductivity detection,
Environ. Sci. Eur., 28(1) (2016) 1–9.
- R.M. Abdul, L. Mutnuri, P.J. Dattatreya, D.A. Mohan, Assessment
of drinking water quality using ICP-MS and microbiological
methods in the Bholakpur area, Hyderabad, India,
Environ. Monit. Assess., 184(3) (2012) 1581–1592.
- M.S. Islam, M.K. Ahmed, M. Raknuzzaman, M. Habubullah-Al-Mamun, M.K. Islam, Heavy metal pollution in surface
water and sediment: a preliminary assessment of an urban
river in a developing country, Ecol. Indic., 48 (2015) 282–291.
- A. Ceresa, E. Bakker, B. Hattendorf, D. Gϋnther, E. Pretsch,
Potentiometric polymeric membrane electrodes for measurement
of environmental samples at trace levels: New
requirements for selectivities and measuring protocols, and
comparison with ICPMS, Anal. Chem., 73(2) (2001) 343–351.
- A. Nemiroski, D.C. Christodouleas, J.W. Hennek, A.A., E.J.
Maxwell, G.M. Whitesides, Universal mobile electrochemical
detector designed for use in resource-limited applications,
Proc. Natl. Acad. Sci. USA, 111(33) (2014) 11984–11989.
- M.S. Noorashikin, A.B. Nur Nadiah, I. Nurain, A.A. Siti
Aisyah, M.R. Siti Zulaika, Determination of phenol in water
samples using cloud point extraction and UV spectrophotometry,
Desal. Water Treat., 57(33) (2016) 15486–15494.
- M. Heibati, C.A. Stedmon, K. Stenroth, S. Rauch, J. Toljander,
M. Säve-Söderbergh, K.R. Murphy, Assessment of drinking
water quality at the tap using fluorescence spectroscopy, Water
Res., 125 (2017) 1–10.
- A. Gałuszka, Z.M. MIgaszewski, J. Namiesnik, Moving your
laboratories to the field–advantages and limitations of the use
of field portable instruments in environmental sample analysis,
Environ. Res., 140 (2015) 593–603.
- C. Dincer, R. Bruch, A. Kling, P.S. Dittrich, G.A. Urban, Multiplexed
point-of-care testing–xPOCT, Trends Biotechnol., 35(8)
(2017) 728–742.
- M. Sher, R. Zhuang, U. Demirci, W. Asghar, Paper-based analytical
devices for clinical diagnosis: recent advances in the
fabrication techniques and sensing mechanisms, Expert Rev.
Mol. Diagn., 17(4) (2017) 351–366.
- E.M. Linares, L.T. Kubota, J. Michaelis, S. Thalhammer,
Enhancement of the detection limit for lateral flow immunoassays:
evaluation and comparison of bioconjugates, J. Immunol.
Methods, 375 (2012) 264–270.
- L. Rivas, M. Dedina-Sánchez, A. de la Escosura-Muñiz, A.
Merkoci, Improving sensitivity of gold nanoparticle-based lateral
flow assays by using wax-printed pillars as delay barriers
of microfluidics, Lab Chip, 14(22) (2014) 4406–4414.
- K.E. McCracken, S.V. Angus, K.A. Reynolds, J.Y. Yoom, Multimodal
imaging and lighting bias correction for improved
μPAD-based water quality monitoring via smartphones, Sci.
Rep., 6 (2016) 27529.
- D. Zhang, B. Gao, Y. Chen, H. Liu, Converting colour to length
based on the coffee-ring effect for quantitative immunoassays
using a ruler as readout, Lab Chip, 18(2) (2018) 271–275.
- T.S. Wong, T.H. Chen, X. Shen, C.M. Ho, Nanochromatography
driven by the coffee ring effect, Anal. Chem., 83(6) (2011)
1871–1873.
- S. Choi, S. Stassi, A.P. Pisano, T.I. Zohdi, Coffee-ring effectbased
three dimensional patterning of micro/nanoparticle
assembly with a single droplet. Langmuir, 26(14) (2010) 11690–11698.
- J.T. Wen, C.M. Ho, P.B. Lillehoj, Coffee ring aptasensor for
rapid protein detection, Langmuir, 29(26) (2013) 8440–8446.
- D.D. Liana, B. Raguse, J.J. Gooding, E. Chow, Recent advances
in paper-based sensors, Sensors, 12(9) (2012) 11505–11526.
- J.H. Shin, J. Park, J.K. Park, Organic solvent and surfactant
resistant paper-fluidic devices fabricated by one-step embossing
of nonwoven polypropylene sheet, Micromachines, 8(1)
(2017) 30.
- P. Kauffman, E. Fu, B. Lutz, P. Yager, Visualization and measurement
of flow in two-dimensional paper networks, Lab
Chip, 10(19) (2010), 2614–2617.
- W. Wang, W.Y. Wu, J.J. Zhu, Tree-shaped paper strip for semiquantitative
colorimetric detection of protein with self-calibration,
J. Chromatogr. A, 1217(24) (2010) 3896–3899.
- B.M. Jayawardane, S. Wei, I.D. McKelvie, S.D. Kolev, Microfluidic
paper-based analytical device for the determination of
nitrite and nitrate, Anal. Chem., 86(15) (2014) 7274–7279.
- D.M. Cate, J.A. Adkins, J. Mettakoonpitak, C.S. Henry, Recent
developments in paper-based microfluidic devices, Anal.
Chem., 87(1) (2015) 19–41.
- K.K. Borah, B. Bhuyan, H.P. Sarma, Lead, arsenic, fluoride, and
iron contamination of drinking water in the tea garden belt of
Darrang district, Assam, India, Environ. Monit. Assess., 169
(2010) 347–352.
- H. Asano, Y. Shiraishi, Development of paper-based microfluidic
analytical device for iron assay using photomask printed
with 3D printer for fabrication of hydrophilic and hydrophobic
zones on paper by photolithography, Anal. Chim. Acta,
883 (2015) 55–60.