References

  1. S.D. Richardson, A.T. Thomas, Water analysis: emerging contaminants and current issues, Anal. Chem., 90(1) (2018) 398–428.
  2. N. Rahmanian, S.H.B. Ali, M. Homayoonfard, N.J. Ali, M. Rahan, A.S. Nizami, Analysis of physiochemical parameters to evaluate the drinking water quality in the State of Perak, Malaysia, J. Chem., 8 (2015) 1–10.
  3. K. Brindha, R. Rajesh, R. Murugan, L. Elango, Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India, Environ. Monit. Assess., 172 (2011) 481–492.
  4. M.A. Seiler, D. Jensen, U. Neist, U.K. Deister, F. Schmitz, Validation data for the determination of perchlorate in water using ion chromatography with suppressed conductivity detection, Environ. Sci. Eur., 28(1) (2016) 1–9.
  5. R.M. Abdul, L. Mutnuri, P.J. Dattatreya, D.A. Mohan, Assessment of drinking water quality using ICP-MS and microbiological methods in the Bholakpur area, Hyderabad, India, Environ. Monit. Assess., 184(3) (2012) 1581–1592.
  6. M.S. Islam, M.K. Ahmed, M. Raknuzzaman, M. Habubullah-Al-Mamun, M.K. Islam, Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country, Ecol. Indic., 48 (2015) 282–291.
  7. A. Ceresa, E. Bakker, B. Hattendorf, D. Gϋnther, E. Pretsch, Potentiometric polymeric membrane electrodes for measurement of environmental samples at trace levels: New requirements for selectivities and measuring protocols, and comparison with ICPMS, Anal. Chem., 73(2) (2001) 343–351.
  8. A. Nemiroski, D.C. Christodouleas, J.W. Hennek, A.A., E.J. Maxwell, G.M. Whitesides, Universal mobile electrochemical detector designed for use in resource-limited applications, Proc. Natl. Acad. Sci. USA, 111(33) (2014) 11984–11989.
  9. M.S. Noorashikin, A.B. Nur Nadiah, I. Nurain, A.A. Siti Aisyah, M.R. Siti Zulaika, Determination of phenol in water samples using cloud point extraction and UV spectrophotometry, Desal. Water Treat., 57(33) (2016) 15486–15494.
  10. M. Heibati, C.A. Stedmon, K. Stenroth, S. Rauch, J. Toljander, M. Säve-Söderbergh, K.R. Murphy, Assessment of drinking water quality at the tap using fluorescence spectroscopy, Water Res., 125 (2017) 1–10.
  11. A. Gałuszka, Z.M. MIgaszewski, J. Namiesnik, Moving your laboratories to the field–advantages and limitations of the use of field portable instruments in environmental sample analysis, Environ. Res., 140 (2015) 593–603.
  12. C. Dincer, R. Bruch, A. Kling, P.S. Dittrich, G.A. Urban, Multiplexed point-of-care testing–xPOCT, Trends Biotechnol., 35(8) (2017) 728–742.
  13. M. Sher, R. Zhuang, U. Demirci, W. Asghar, Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms, Expert Rev. Mol. Diagn., 17(4) (2017) 351–366.
  14. E.M. Linares, L.T. Kubota, J. Michaelis, S. Thalhammer, Enhancement of the detection limit for lateral flow immunoassays: evaluation and comparison of bioconjugates, J. Immunol. Methods, 375 (2012) 264–270.
  15. L. Rivas, M. Dedina-Sánchez, A. de la Escosura-Muñiz, A. Merkoci, Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics, Lab Chip, 14(22) (2014) 4406–4414.
  16. K.E. McCracken, S.V. Angus, K.A. Reynolds, J.Y. Yoom, Multimodal imaging and lighting bias correction for improved μPAD-based water quality monitoring via smartphones, Sci. Rep., 6 (2016) 27529.
  17. D. Zhang, B. Gao, Y. Chen, H. Liu, Converting colour to length based on the coffee-ring effect for quantitative immunoassays using a ruler as readout, Lab Chip, 18(2) (2018) 271–275.
  18. T.S. Wong, T.H. Chen, X. Shen, C.M. Ho, Nanochromatography driven by the coffee ring effect, Anal. Chem., 83(6) (2011) 1871–1873.
  19. S. Choi, S. Stassi, A.P. Pisano, T.I. Zohdi, Coffee-ring effectbased three dimensional patterning of micro/nanoparticle assembly with a single droplet. Langmuir, 26(14) (2010) 11690–11698.
  20. J.T. Wen, C.M. Ho, P.B. Lillehoj, Coffee ring aptasensor for rapid protein detection, Langmuir, 29(26) (2013) 8440–8446.
  21. D.D. Liana, B. Raguse, J.J. Gooding, E. Chow, Recent advances in paper-based sensors, Sensors, 12(9) (2012) 11505–11526.
  22. J.H. Shin, J. Park, J.K. Park, Organic solvent and surfactant resistant paper-fluidic devices fabricated by one-step embossing of nonwoven polypropylene sheet, Micromachines, 8(1) (2017) 30.
  23. P. Kauffman, E. Fu, B. Lutz, P. Yager, Visualization and measurement of flow in two-dimensional paper networks, Lab Chip, 10(19) (2010), 2614–2617.
  24. W. Wang, W.Y. Wu, J.J. Zhu, Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration, J. Chromatogr. A, 1217(24) (2010) 3896–3899.
  25. B.M. Jayawardane, S. Wei, I.D. McKelvie, S.D. Kolev, Microfluidic paper-based analytical device for the determination of nitrite and nitrate, Anal. Chem., 86(15) (2014) 7274–7279.
  26. D.M. Cate, J.A. Adkins, J. Mettakoonpitak, C.S. Henry, Recent developments in paper-based microfluidic devices, Anal. Chem., 87(1) (2015) 19–41.
  27. K.K. Borah, B. Bhuyan, H.P. Sarma, Lead, arsenic, fluoride, and iron contamination of drinking water in the tea garden belt of Darrang district, Assam, India, Environ. Monit. Assess., 169 (2010) 347–352.
  28. H. Asano, Y. Shiraishi, Development of paper-based microfluidic analytical device for iron assay using photomask printed with 3D printer for fabrication of hydrophilic and hydrophobic zones on paper by photolithography, Anal. Chim. Acta, 883 (2015) 55–60.