References

  1. The World Population Prospects: The 2017 Revision, UN Department of Economic and Social Affairs, United Nations, New York, 2017.
  2. M. Khan, W. Cao, M. Ullah, Ab initio calculations for the electronic and optical properties of Y‐doped anatase TiO2, Phys. Status Solidi B, 250 (2013) 364–369.
  3. J. He, Q. Liu, Z. Sun, W. Yan, G. Zhang, Z. Qi, P. Xu, Z. Wu, S. Wei, High photocatalytic activity of rutile TiO2 induced by iodine doping, J. Phys. Chem. C, 114 (2010) 6035–6038.
  4. M. Li, J. Zhang, Y. Zhang, First-principles calculation of compensated (2N, W) codoping impacts on band gap engineering in anatase TiO2, Chem. Phys. Lett., 527 (2012) 63–66.
  5. J. Lu, Y. Dai, M. Guo, L. Yu, K. Lai, B. Huang, Chemical and optical properties of carbon-doped TiO2: a density-functional study, Appl. Phys. Lett., 100 (2012) 102114.
  6. M. Khan, J. Xu, N. Chen, W. Cao, First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2, J. Alloys Compd., 513 (2012) 539–545.
  7. A.-W. Xu, Y. Gao, H.-Q. Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles, J. Catal., 207 (2002) 151–157.
  8. C. Liang, C. Liu, F. Li, F. Wu, The effect of praseodymium on the adsorption and photocatalytic degradation of azo dye in aqueous Pr3+-TiO2 suspension, Chem. Eng. J., 147 (2009) 219–225.
  9. C.J. Kim, H.H. Choi, C.H. Sohn, Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner, J. Hazard. Mater., 161 (2009) 416–422.
  10. W. Smith, S. Mao, G. Lu, A. Catlett, J. Chen, Y. Zhao, The effect of Ag nanoparticle loading on the photocatalytic activity of TiO2 nanorod arrays, Chem. Phys. Lett., 485 (2010) 171–175.
  11. C.M. Fan, P. Xue, Y.P. Sun, Preparation of nano-TiO2 doped with cerium and its photocatalytic activity, J. Rare Earths, 24 (2006) 309–313.
  12. Y. Wang, K. Lu, C. Feng, Photocatalytic degradation of methyl orange by polyoxometalates supported on yttrium-doped TiO2, J. Rare Earths, 29 (2011) 866–871.
  13. B. Murugesan, A. Sivakumar, A. Loganathan, P. Sivakumar, Synthesis and photocatalytic studies of lanthanum oxide doped nano carbon hollow spheres, J. Taiwan Inst. Chem. Eng., 71 (2017) 364–372.
  14. V.A. Litvishkova, A.I. Bukhter, A.V. Nepogod’ev, A.M. Bezhanidze, Chemical composition of used motor oils, Chem. Technol. Fuels Oils, 10 (1974) 962–965.
  15. M. Inagaki, Discussion of the formation of nanometric texture in spherical carbon bodies, Carbon, 35 (1997) 711–713.
  16. S.H. Ng, J. Wang, Z.P. Guo, J. Chen, G.X. Wang, H.K. Liu, Single wall carbon nanotube paper as anode for lithium-ion battery, Electrochim. Acta, 51 (2005) 23–28.
  17. A. Nieto-Marquez, I. Espartero, J.C. Lazo, A. Romero, J.L. Valverde, Direct synthesis of carbon and nitrogen–carbon nanospheres from aromatic hydrocarbons, Chem. Eng. J., 153 (2009) 211–216.
  18. J. Huang, S. Yang, Y. Xu, X. Zhou, X. Jiang, N. Shi, D. Cao, J. Yin, G. Wang, Fe2O3 sheets grown on nickel foam as electrode material for electrochemical capacitors, J. Electroanal. Chem., 713 (2014) 98–102.
  19. H. Wang, C. Qian, Z. Yi, L. Rao, H. Liu, S. Zeng, Hydrothermal synthesis and tunable multicolor upconversion emission of cubic phase Y2O3 nanoparticles, Adv. Condens. Matter Phys., 2013 (2013) 1–6.
  20. K.S. Kumar, C.-G. Song, G.M. Bak, G. Heo, M.-J. Seong, J.-W. Yoon, Phase control of yttrium (Y)-doped TiO2 nanofibers and intensive visible photoluminescence, J. Alloys Compd., 617 (2014) 683–687.
  21. G.M. Yang, Q. Xu, H.W. Tian, X. Wang, W.T. Zheng, Amorphous hollow carbon spheres synthesized using radio frequency plasma-enhanced chemical vapour deposition, J. Phys. D: Appl. Phys., 41 (2008) 195504.
  22. L. Chiodo, J.M. Garcia-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, A. Rubio, Self-energy and excitonic effects in the electronic and optical properties of TiO2 crystalline phases, Phys. Rev. B: Condens. Matter, 82 (2010) 045207.
  23. W. Kang, M.S. Hybertsen, Quasiparticle and optical properties of rutile and anatase TiO2, Phys. Rev. B: Condens. Matter, 82 (2010) 085203.
  24. X. Niu, S. Li, H. Chu, J. Zhou, Preparation, characterization of Y3+-doped TiO2 nanoparticles and their photocatalytic activities for methyl orange degradation, J. Rare Earths, 29 (2011) 225–229.
  25. K.M. Reza, A.S.W. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review, Appl. Water Sci., 7 (2017) 1569–1578.
  26. W.Z. Tang, Z. Zhang, H. An, M.O. Quintana, D.F. Torres, TiO2/UV photodegradation of azo dyes in aqueous solutions, Environ. Technol., 18 (1997) 1–12.
  27. E.C. Lima, M.A. Adebayo, F.M. Machado, Kinetic and Equilibrium Models of Adsorption, Chapter 3, C.P. Bergmann, F.M. Machado Eds., Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Springer, 2015, pp. 33–69.
  28. S.Y. Lou, X.B. Jia, Y.Q. Wang, S.M. Zhou, Template-assisted in-situ synthesis of porous AgBr/Ag composite microspheres as highly efficient visible-light photocatalyst, Appl. Catal., B, 586 (2015) 176–177.
  29. R. Kopelman, Fractal reaction kinetics, Science, 241 (1988) 1620–1626.
  30. C. Wang, Fractional kinetics of photocatalytic degradation, J. Adv. Dielectr., 8 (2018) 1850034.
  31. K. Vasanth Kumar, K. Porkodi, A. Selvaganapathi, Constrain in solving Langmuir–Hinshelwood kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst, Dyes Pigm., 75 (2007) 246–249.
  32. S. Rahnamaeiyan, S. Khademolhoseini, Preparation and characterization of cadmium titanate nanoparticles via novel sol–gel method and its photocatalyst application, J. Mater. Sci. - Mater. Electron., 27 (2016) 6043–6047.