References
- The World Population Prospects: The 2017 Revision, UN
Department of Economic and Social Affairs, United Nations,
New York, 2017.
- M. Khan, W. Cao, M. Ullah, Ab initio calculations for the
electronic and optical properties of Y‐doped anatase TiO2, Phys. Status Solidi B, 250 (2013) 364–369.
- J. He, Q. Liu, Z. Sun, W. Yan, G. Zhang, Z. Qi, P. Xu, Z. Wu,
S. Wei, High photocatalytic activity of rutile TiO2 induced by
iodine doping, J. Phys. Chem. C, 114 (2010) 6035–6038.
- M. Li, J. Zhang, Y. Zhang, First-principles calculation of
compensated (2N, W) codoping impacts on band gap
engineering in anatase TiO2, Chem. Phys. Lett., 527 (2012)
63–66.
- J. Lu, Y. Dai, M. Guo, L. Yu, K. Lai, B. Huang, Chemical and
optical properties of carbon-doped TiO2: a density-functional
study, Appl. Phys. Lett., 100 (2012) 102114.
- M. Khan, J. Xu, N. Chen, W. Cao, First principle calculations
of the electronic and optical properties of pure and
(Mo, N) co-doped anatase TiO2, J. Alloys Compd., 513 (2012)
539–545.
- A.-W. Xu, Y. Gao, H.-Q. Liu, The preparation, characterization,
and their photocatalytic activities of rare-earth-doped TiO2
nanoparticles, J. Catal., 207 (2002) 151–157.
- C. Liang, C. Liu, F. Li, F. Wu, The effect of praseodymium on
the adsorption and photocatalytic degradation of azo dye in
aqueous Pr3+-TiO2 suspension, Chem. Eng. J., 147 (2009) 219–225.
- C.J. Kim, H.H. Choi, C.H. Sohn, Auto-ignition of lubricating
oil working at high pressures in a compressor for an air conditioner,
J. Hazard. Mater., 161 (2009) 416–422.
- W. Smith, S. Mao, G. Lu, A. Catlett, J. Chen, Y. Zhao, The effect
of Ag nanoparticle loading on the photocatalytic activity of TiO2
nanorod arrays, Chem. Phys. Lett., 485 (2010) 171–175.
- C.M. Fan, P. Xue, Y.P. Sun, Preparation of nano-TiO2 doped with
cerium and its photocatalytic activity, J. Rare Earths, 24 (2006)
309–313.
- Y. Wang, K. Lu, C. Feng, Photocatalytic degradation of methyl
orange by polyoxometalates supported on yttrium-doped TiO2,
J. Rare Earths, 29 (2011) 866–871.
- B. Murugesan, A. Sivakumar, A. Loganathan, P. Sivakumar,
Synthesis and photocatalytic studies of lanthanum oxide
doped nano carbon hollow spheres, J. Taiwan Inst. Chem. Eng.,
71 (2017) 364–372.
- V.A. Litvishkova, A.I. Bukhter, A.V. Nepogod’ev, A.M. Bezhanidze,
Chemical composition of used motor oils, Chem. Technol.
Fuels Oils, 10 (1974) 962–965.
- M. Inagaki, Discussion of the formation of nanometric texture
in spherical carbon bodies, Carbon, 35 (1997) 711–713.
- S.H. Ng, J. Wang, Z.P. Guo, J. Chen, G.X. Wang, H.K. Liu, Single
wall carbon nanotube paper as anode for lithium-ion battery,
Electrochim. Acta, 51 (2005) 23–28.
- A. Nieto-Marquez, I. Espartero, J.C. Lazo, A. Romero,
J.L. Valverde, Direct synthesis of carbon and nitrogen–carbon
nanospheres from aromatic hydrocarbons, Chem. Eng. J.,
153 (2009) 211–216.
- J. Huang, S. Yang, Y. Xu, X. Zhou, X. Jiang, N. Shi, D. Cao,
J. Yin, G. Wang, Fe2O3 sheets grown on nickel foam as electrode
material for electrochemical capacitors, J. Electroanal. Chem.,
713 (2014) 98–102.
- H. Wang, C. Qian, Z. Yi, L. Rao, H. Liu, S. Zeng, Hydrothermal
synthesis and tunable multicolor upconversion emission of
cubic phase Y2O3 nanoparticles, Adv. Condens. Matter Phys.,
2013 (2013) 1–6.
- K.S. Kumar, C.-G. Song, G.M. Bak, G. Heo, M.-J. Seong,
J.-W. Yoon, Phase control of yttrium (Y)-doped TiO2 nanofibers
and intensive visible photoluminescence, J. Alloys Compd.,
617 (2014) 683–687.
- G.M. Yang, Q. Xu, H.W. Tian, X. Wang, W.T. Zheng, Amorphous
hollow carbon spheres synthesized using radio frequency
plasma-enhanced chemical vapour deposition, J. Phys. D: Appl.
Phys., 41 (2008) 195504.
- L. Chiodo, J.M. Garcia-Lastra, A. Iacomino, S. Ossicini, J. Zhao,
H. Petek, A. Rubio, Self-energy and excitonic effects in the
electronic and optical properties of TiO2 crystalline phases,
Phys. Rev. B: Condens. Matter, 82 (2010) 045207.
- W. Kang, M.S. Hybertsen, Quasiparticle and optical properties
of rutile and anatase TiO2, Phys. Rev. B: Condens. Matter,
82 (2010) 085203.
- X. Niu, S. Li, H. Chu, J. Zhou, Preparation, characterization of
Y3+-doped TiO2 nanoparticles and their photocatalytic activities
for methyl orange degradation, J. Rare Earths, 29 (2011) 225–229.
- K.M. Reza, A.S.W. Kurny, F. Gulshan, Parameters affecting
the photocatalytic degradation of dyes using TiO2: a review,
Appl. Water Sci., 7 (2017) 1569–1578.
- W.Z. Tang, Z. Zhang, H. An, M.O. Quintana, D.F. Torres,
TiO2/UV photodegradation of azo dyes in aqueous solutions,
Environ. Technol., 18 (1997) 1–12.
- E.C. Lima, M.A. Adebayo, F.M. Machado, Kinetic and
Equilibrium Models of Adsorption, Chapter 3, C.P. Bergmann,
F.M. Machado Eds., Carbon Nanomaterials as Adsorbents for
Environmental and Biological Applications, Springer, 2015,
pp. 33–69.
- S.Y. Lou, X.B. Jia, Y.Q. Wang, S.M. Zhou, Template-assisted
in-situ synthesis of porous AgBr/Ag composite microspheres
as highly efficient visible-light photocatalyst, Appl. Catal., B,
586 (2015) 176–177.
- R. Kopelman, Fractal reaction kinetics, Science, 241 (1988)
1620–1626.
- C. Wang, Fractional kinetics of photocatalytic degradation,
J. Adv. Dielectr., 8 (2018) 1850034.
- K. Vasanth Kumar, K. Porkodi, A. Selvaganapathi, Constrain
in solving Langmuir–Hinshelwood kinetic expression for the
photocatalytic degradation of Auramine O aqueous solutions
by ZnO catalyst, Dyes Pigm., 75 (2007) 246–249.
- S. Rahnamaeiyan, S. Khademolhoseini, Preparation and
characterization of cadmium titanate nanoparticles via novel
sol–gel method and its photocatalyst application, J. Mater.
Sci. - Mater. Electron., 27 (2016) 6043–6047.