References

  1. M.D. Sobsey, C.E. Stauber, L.M. Casanova, J.M. Brown, M.A. Elliott, Point of use household drinking water filtration: a practical, effective solution for providing sustained access to safe drinking water in the developing world, Environ. Sci. Technol., 42 (2008) 4261–4267.
  2. S. Bandyopadhyay, Sustainable Access to Treated Drinking Water in Rural India, M. Dinesh Kumar, Y. Kabir, A.J. James Eds., Rural Water Systems for Multiple Uses and Livelihood Security, 1st ed., Elsevier, Cambridge, MA, 2016, pp. 203–227.
  3. G. Kalkoti, Nature endowment to mankind, Kurukshetra, J. Rural Dev., Hindustan Times, 61 (2013) 23–27.
  4. T.F. Clasen, J. Brown, S. Collin, O. Suntura, S. Cairncross, Reducing diarrhea through the use of household-based ceramic water filters: a randomized, controlled trial in rural Bolivia, Am. J. Trop. Med. Hyg., 70 (2004) 651–657.
  5. T.F. Clasen, J. Brown, S.M. Collin, Preventing diarrhoea with household ceramic water filters: assessment of a pilot project in Bolivia, Int. J. Environ. Health Res., 16 (2006) 231–239.
  6. D. Van Halem, H. Van der Laan, S.G.J. Heijman, J.C. Van Dijk, G.L. Amy, Assessing the sustainability of the silver-impregnated ceramic pot filter for low-cost household drinking water treatment, Phys. Chem. Earth Parts A/B/C, 34 (2009) 36–42.
  7. A.K. Plappally, J.H. Lienhard, Costs for water supply, treatment, end-use and reclamation, Desal. Wat. Treat., 51 (2013) 200–232.
  8. S. Goldberg, Competitive adsorption of arsenate and arsenite on oxides and clay minerals, Soil Sci. Soc. Am. J., 66 (2002) 413–421.
  9. A. Sdiri, T. Higashi, T. Hatta, F. Jamoussi, N. Tase, Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems, Chem. Eng. J., 172 (2011) 37–46.
  10. D. Mohan, C.U. Pittman Jr, Arsenic removal from water/wastewater using adsorbents—a critical review, J. Hazard. Mater., 142 (2007) 1–53.
  11. R. Srinivasan, Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water, Adv. Mater. Sci. Eng., 2011 (2011) 1–16.
  12. M. Chiban, M. Zerbet, G. Carja, F. Sinan, Application of lowcost adsorbents for arsenic removal: a review, J. Environ. Chem. Ecotoxicol., 4 (2012) 91–102.
  13. B.R. Poole, Point-of-Use Water Treatment for Arsenic Removal Through Iron Oxide Coated Sand: Application for the Terai Region of Nepal, M.E. Thesis in Civil and Environmental Engineering, MIT, MA, 2002.
  14. S.K. Hwang, Point-of-Use Arsenic Removal from Drinking Water in Nepal Using Coagulation and Filtration, M.E. Thesis in Civil and Environmental Engineering, MIT, MA, 2002.
  15. X. Meng, G.P. Korfiatis, C. Christodoulatos, S. Bang, Treatment of arsenic in Bangladesh well water using a household co-precipitation and filtration system, Water Res., 35 (2001) 2805–2810.
  16. H.L. Fuhrman, J.C. Tjell, D. McConchie, Adsorption of arsenic from water using activated neutralized red mud, Environ. Sci. Technol., 38 (2004) 2428–2434.
  17. T.K.K. Ngai, Arsenic Speciation and Evaluation of an Adsorption Media in Rupandehi and Nawalparasi Districts of Nepal, M.E. Thesis in Civil and Environmental Engineering, MIT, MA, 2002.
  18. S.K. McAllister, Analysis and comparison of sustainable water filters, EPD 397 TECHNICAL REPORT, University of Wisconsin, Madison, Retrieved December, 2 (2005) 2011.
  19. D.S. Lantagne, Investigation of the Potters for Peace Colloidal Silver Impregnated Ceramic Filter, Report, 1 (2001) 79.
  20. S. Murcott, From Appropriate to Green to Sustainable—Co-Designing/Co-Evolving for Development, Design and Dissemination, MIT, MA, 2005.
  21. H. Chiew, M.L. Sampson, S. Huch, S. Ken, B.C. Bostick, Effect of groundwater iron and phosphate on the efficacy of arsenic removal by iron-amended biosand filters, Environ. Sci. Technol., 43 (2009) 6295–6300.
  22. A.K. Plappally, I. Yakub, L.C. Brown, W.O. Soboyejo, A.B.O. Soboyejo, Physical properties of porous clay ceramic-ware, J. Eng. Mater. Technol., 133 (2011) 031004.
  23. S. Gupta, R.K. Satankar, A. Kaurwar, U. Aravind, M. Sharif, A. Plappally, Household production of ceramic water filters in Western Rajasthan, India, Int. J. Serv. Learn. Eng., 13 (2018) 53–66.
  24. I. Yakub, J. Du, W.O. Soboyejo, Mechanical properties, modeling and design of porous clay ceramics, Mater. Sci. Eng., A, 558 (2012) 21–29.
  25. A. Kaurwar, R.K. Satankar, L. Dave, S. Gupta, J. Oomen, M. Sharey, S. Bodhankar, A.K. Plappally, Use of clayey salty soils and its composite derivatives for construction and ceramics for household use in the Thar Desert in India, in: Reference Module in Materials Science and Materials Engineering, Elsevier, Cambridge, MA, 2018.
  26. A. Kaurwar, Characterization of Clay Ceramics Based on Reuse of Organic Residue and Industrial Wastes for Point of Use Water Filtration Application, Doctoral Thesis, Mechanical Engineering Department, Indian Institute of Technology Jodhpur, India, 2018.
  27. D. Mehta, P. Mondal, S. George, Utilization of marble waste powder as a novel adsorbent for removal of fluoride ions from aqueous solution, J. Environ. Chem. Eng., 4 (2016) 932–942.
  28. M. Bhalothia, S. Agrawal, A. Soni, P.K. Baroliya, A.K. Goswami, Application of marble slurry a low cost waste material for the removal of Co (II) ions from synthetic aqueous solutions, Chem. Biol. Interfaces, 5 (2015) 401–404.
  29. O.M. Omar, G.D.A. Elhameed, M.A. Sherif, H.A. Mohamadien, Influence of limestone waste as partial replacement material for sand and marble powder in concrete properties, HBRC J., 8 (2012) 193–203.
  30. O.S. Thirunavukkarasu, T. Viraraghavan, K.S. Subramanian, S. Tanjore, Arsenic removal from drinking water using iron oxide-coated sand, Urban Water J., 4 (2002) 415–421.
  31. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review, J. Hazard. Mater., 211 (2012) 317–331.
  32. V.W. Tam, C.M. Tam, A review on the viable technology for construction waste recycling, Resour. Conserv. Recycl., 47 (2006) 209–221.
  33. American Public Health Association, American Water Works Association, Water Pollution Control Federation, & Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, Vol. 11, American Public Health Association, Washington, D.C., 1965.
  34. B.A. Manning, S.E. Fendorf, B. Bostick, D.L. Suarez, Arsenic (III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite, Environ. Sci. Technol., 36 (2002) 976–981.
  35. S. Yao, Z. Liu, Z. Shi, Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite, J. Environ. Health Sci. Eng., 12 (2014) 58.
  36. A.K. Plappally, I. Yakub, L.C. Brown, W.O. Soboyejo, A.B.O. Soboyejo, Theoretical and experimental investigation of water flow through porous ceramic clay composite water filter, Fluid Dyn. Mater. Process., 5 (2009) 373–398.
  37. A. Bhatnagar, E. Kumar, M. Sillanpää, Nitrate removal from water by nano-alumina: characterization and sorption studies, Chem. Eng. J., 163 (2010) 317–323.
  38. H. Zhang, H.M. Selim, Kinetics of arsenate adsorption– desorption in soils, Env. Sci. Technol., 39 (2005) 6101–6108.
  39. S.M. Lee, D. Tiwari, Organo-modified sericite in the remediation of an aquatic environment contaminated with As (III) or As (V), Environ. Sci. Pollut. Res., 21 (2014) 407–418.
  40. A. Zehhaf, A. Benyoucef, C. Quijada, S. Taleb, E. Morallon, Algerian natural montmorillonites for arsenic (III) removal in aqueous solution, Int. J. Env. Sci. Technol., 12 (2015) 595–602.
  41. M.M. Ghosh, Adsorption of arsenic on hydrous aluminium oxide, In Proc. Mid. Atl. Ind. Waste Conf. (USA), 17 (1985) 139–155.
  42. X. Meng, S. Bang, G.P. Korfiatis, Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride, Water Res., 34 (2000) 1255–1261.
  43. V. Dutré, C. Vandecasteele, Solidification/stabilisation of arsenic-containing waste: leach tests and behaviour of arsenic in the leachate, Waste Manage., 15 (1995) 55–62.
  44. S. Gupta, A. Kaurwar, R.K. Satankar, K. Usha, M.A.R. Sharif, A.K. Plappally, Flow, Microbial Filtration and Petrophysical Properties of Ceramic Plate Ware Gravity Water Filter During Cyclic Water Loading Events, in the Proceedings of From Pollution to Purification (ICW 2016), Dec. 12–15, Organized by IUIC, ASCEED & School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, India, 2016.
  45. P.S. Nayak, B.K. Singh, Instrumental characterization of clay by XRF, XRD and FTIR, Bull. Mater. Sci., 30 (2007) 235–238.
  46. E. Petala, K. Dimos, A. Douvalis, Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution, J. Hazard. Mater., 261 (2013) 295–306.
  47. P.K. Tandon, R.C. Shukla, S.B. Singh, Removal of arsenic (III) from water with clay-supported zerovalent iron nanoparticles synthesized with the help of tea liquor, Ind. Eng. Chem. Res., 52 (2013) 10052–10058.
  48. S. Li, P. Wu, H. Li, Synthesis and characterization of organomontmorillonite supported iron nanoparticles, Appl. Clay Sci., 50 (2010) 330–336.
  49. X. Li, Y. Zhao, B. Xi, Removal of nitrobenzene by immobilized nanoscale zero-valent iron: effect of clay support and efficiency optimization, Appl. Surf. Sci., 370 (2016) 260–269.
  50. Z.X. Chen, X.Y. Jin, Z. Chen, Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zerovalent iron, J. Colloid Interface Sci., 363 (2011) 601–607.
  51. R. Chen, Z. Zhang, C. Feng, Application of simplex-centroid mixture design in developing and optimizing ceramic adsorbent for As (V) removal from water solution, Microporous Mesoporous Mater., 131 (2010) 115–121.
  52. M.L. Pierce, C.B. Moore, Adsorption of arsenite and arsenate on amorphous iron hydroxide, Water Res., 16 (1982) 1247–1253.
  53. M.A. Anderson, J.F. Ferguson, J. Gavis, Arsenate adsorption on amorphous aluminum hydroxide, J. Colloid Interface Sci., 54 (1976) 391–399.
  54. J.A. Wilkie, J.G. Hering, Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes, Colloids Surf. A Physicochem. Eng. Asp., 107 (1996) 97–110.
  55. A.F. Hassan, A.M. Abdel-Mohsen, H. Elhadidy, Adsorption of arsenic by activated carbon, calcium alginate and their composite beads, Int. J. Biol. Macromol., 68 (2014) 125–130.
  56. C. Escudero, N. Fiol, I. Villaescusa, J.C. Bollinger, Arsenic removal by a waste metal (hydr) oxide entrapped into calcium alginate beads, J. Hazard. Mater., 164 (2009) 533–541.
  57. S. Bibi, A. Farooqi, K. Hussain, N. Haider, Evaluation of industrial based adsorbents for simultaneous removal of arsenic and fluoride from drinking water, J. Clean. Prod., 87 (2015) 882–896.
  58. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  59. H. Zeng, B. Fisher, D.E. Giammar, Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent, Environ. Sci. Technol., 42 (2007) 147–152.
  60. C.T. Kamala, K.H. Chu, N.S. Chary, P.K. Pandey, S.L. Ramesh, A.R.K. Sastry, K.C. Sekhar, Removal of arsenic (III) from aqueous solutions using fresh and immobilized plant biomass, Water Res., 39 (2005) 2815–2826.
  61. R. Say, N. Yılmaz, A. Denizli, A biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum, Sep. Sci. Technol., 38 (2003) 2039–2053.
  62. J. Fang, B. Deng, T.M. Whitworth, Arsenic removal from drinking water using clay membranes, in: ACS Symposium Series, American Chemical Society, 915 (2005) 294–305.
  63. S.L. Stipp, M.F. Hochella Jr, G.A. Parks, J.O. Leckie, Cd2+ uptake by calcite, solid-state diffusion, and the formation of solid-solution: interface processes observed with nearsurface sensitive techniques (XPS, LEED, and AES), Geochim. Cosmochim. Acta, 56 (1992) 1941–1954.
  64. H.A. Aziz, P.G. Smith, The influence of pH and coarse media on manganese precipitation from water, Water Res., 26 (1992) 853–855.
  65. H.A. Aziz, M.N. Adlan, K. Ariffin, Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: post treatment by high quality limestone, Bioresour. Technol., 99 (2008) 1578–1583.
  66. F. Fufa, E. Alemayehu, B. Lennartz, Sorptive removal of arsenate using termite mound, J. Environ. Manage., 132 (2014) 188–196.
  67. K. Chassapis, M. Roulia, E. Vrettou, D. Fili, M. Zervaki, Biofunctional characteristics of lignite fly ash modified by humates: a new soil conditioner, Bioinorg. Chem. Appl., 2010 (2010) 1–8.
  68. M. Valko, D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol., 39 (2007) 44–84.
  69. R. Chen, Z. Lei, S. Yang, Characterization and modification of porous ceramic sorbent for arsenate removal, Colloids Surf. A Physicochem. Eng. Asp., 414 (2012) 393–399.
  70. J. Brown, M.D. Sobsey, Ceramic media amended with metal oxide for the capture of viruses in drinking water, Environ. Technol., 30 (2009) 379–391.
  71. B.O. Ortega-Morales, M.M. Reyes-Estebanez, C.C. Gaylarde, J.C. Camacho-Chab, P. Sanmartín, M.J. Chan-Bacab, J.E. Pereañez-Sacarias, Antimicrobial properties of nanomaterials used to control microbial colonization of stone substrata, H. Majid, Karapanagiotis, Ioannis, Eds., Advanced Materials for the Conservation of Stone, Springer, Cham. Switzerland, 2018 (2018) 277–298.
  72. Omya Water and energy, calcium carbonate treatment of drinking water, Omya International AG, Oftringen, Switzerland. https://www.omya.com/Documents/OARP/WAE_Omyaqua_Web.pdf.
  73. M. O’Farrell, S. Wild, B.B. Sabir, Pore size distribution and compressive strength of waste clay brick mortar, Cement Concrete Comp., 23 (2001) 81–91.
  74. D.P. Bentz, Modeling the influence of limestone filler on cement hydration using CEMHYD3D, Cement Concrete Comp., 28 (2006) 124–129.
  75. T. Kavas, A. Olgun, Properties of cement and mortar incorporating marble dust and crushed brick, Ceram. Silikaty, 52 (2008) 24.
  76. W. Acchar, F.A. Vieira, D. Hotza, Effect of marble and granite sludge in clay materials, Mater. Sci. Eng., A, 419 (2006) 306–309.
  77. F. Saboya Jr, G.C. Xavier, J. Alexandre, The use of the powder marble by-product to enhance the properties of brick ceramic, Constr. Build. Mater., 21 (2007) 1950–1960.
  78. P.M. Velasco, M.M. Ortíz, M.M. Giró, L.M. Velasco, Fired clay bricks manufactured by adding wastes as sustainable construction material—a review, Constr. Build. Mater., 63 (2014) 97–107.