References
- S. Heddam, H. Lamda, S. Filali, Predicting effluent biochemical
oxygen demand in a wastewater treatment plant using
generalized regression neural network based approach: a
comparative study, Environ. Process., 16 (2016), 153–165.
- I. Plazl, G. Pipus, M. Drolka, T. Koloini, Parametric sensitivity
and evaluation of a dynamic model for single-stage wastewater
treatment plant, Acta Chim. Slov., 46 (1999) 289–300.
- K.P. Singh, A. Basant, A. Malik, G. Jain, Artificial neural network
modeling of the river water quality a case study, Ecol. Model.,
220 (2009) 888–895.
- X. Wen, J. Fang, M. Diao, C. Zhang, Artificial neural network
modeling of dissolved oxygen in the Heihe River, Northwestern
China, Environ. Monit. Assess., 185 (2013), 4361–4371.
- A.N.S. Tomić, D.Z. Antanasijević, M.Đ. Ristić, A.A. Perić-Grujić, V.V. Pocajt, Modeling the bod of Danube River in Serbia
using spatial, temporal, and input variables optimized artificial
neural network models, Environ. Monit. Assess., 188 (2016).
- Q. Chen, A. Mynett, Modelling algal blooms in the Dutch
coastal waters by integrated numerical and fuzzy cellular
automata approaches, Ecol. Model., 199 (2006) 73–81.
- M.R. Kuppusamy, V.V. Giridhar, Factor analysis of water
quality characteristics including trace metal speciation in the
coastal environmental system of Chennai Ennore, Environ. Int.,
32 (2006) 174–179.
- K.-W. Chau, N. Muttil, Data mining and multivariate statistical
analysis for ecological system in coastal waters, J. Hydroinf.,
9 (2007) 305–317.
- M.L. Wu, Y.S. Wang, Using Chemometeries to Evaluate
Anthropogenic Effects in Daya Bay, China, Estuar, Coast. Shelf.
Sci., 72 (2007) 732–742.
- A.F.M. Alkarkhi, A. Ahmad, A.M. Easa, Assessment of surface
water quality of selected estuaries of Malaysia: multivariate
statistical techniques, The Environmentalist, 29 (2009) 255–262.
- V. Kumar, A. Sharma, A. Chawla, R. Bhardwaj, K.T. Ashwani,
Water quality assessment of river Beas, India, using multivariate
and remote sensing techniques, Environ. Monit. Assess.,
188 (2016) 137.
- B.K. McCabe, I. Hamawand, C. Baillie, Investigating wastewater
modelling as a tool to predict anaerobic decomposition and
biogas yield of abattoir effluent, J. Environ. Chem. Eng., 1 (2013)
1375- 1379.
- M.W. Lee, S.H. Hong, H. Choi, J.-H. Kim, D.S. Lee, J.M. Park,
Real–time remote monitoring of small-scaled biological
wastewater treatment plants by a multivariate statistical process
control and neural network-based software sensors, Process
Biochem., 43 (2008) 1107–1113.
- J. Tomperi, E. Koivuranta, A. Kuokkanen, K. Leiviskä, Modelling
effluent quality based on a real-time optical monitoring of the
wastewater treatment process, Environ. Technol., 38 (2017) 1-13,
- K.P. Oliveira-Esquerre, M. Mori, R.E. Bruns, Simulation of an
industrial wastewater treatment plant using artificial neural
networks and principal components analysis, Braz. J. Chem.
Eng., 19 (2002), 365-370.
- S. Acikalin, R. Ileri, R. Keles, Estimation of Outflow Water
Parameters and Yield Values of Adapazari Urban Wastewater
Treatment Plant by Artificial Neural Networks, Üniversite
Öğrencileri 2. Çevre Sorulari Kongresi, Istanbul, (In Turkish),
(2007) 100–107.
- D. Guclu, Modeling of Full Scale Urban Wastewater Treatment
Plants by Using Computer Program and Investigation of
Treatment Performances, Phd Thesis, Selcuk University,
Institute of Science and Technology, Konya (In Turkish), 2007.
- E. Dogan, R. Koklu, B. Sengorur, Modeling biological oxygen
demand of the Melen River in Turkey using an artificial neural
network technique, J. Environ. Manage., 90 (2009) 1229–1235.
- O.E. Denizci, Dynamic Simulation of Activated Sludge Systems:
Investigation of Tuzla and Pasaköy Domestic Wastewater
Treatment Plants in Istanbul, Master’s Thesis, Yildiz Technic
University, Institute of Science and Technology, İstanbul (In
Turkish) 2009.
- Y-S.T. Hong, M.R. Rosen, R. Bhamidimarri, Analysis of a
municipal wastewater treatment plant using a neural networkbased
pattern analysis, Water Res., 37 (2003) 1608–1618.
- O.T. Baki, E. Aras, Estimation of BOD in wastewater treatment
plant by using different ANN algorithms, Membr. Water Treat.,
9 (2018) 455-462.
- Y. Ma, M. Huang, J. Wan, K. Hu, Y. Wang, H. Zhang, Hybrid
artificial neural network genetic algorithm technique for
modeling chemical oxygen demand removal in anoxic/oxic
process, J. Environ. Sci. Health A Tox. Hazard Subst. Environ.
Eng., 46(2011) 574–580.
- H. Guo, K. Jeong, J. Lim, J. Jo, Y.M. Kim, J-P. Park, J.H. Kim,
K.H. Cho, Prediction of effluent concentration in a wastewater
treatment plant using machine learning models, J. Environ. Sci.,
32 (2015) 90–101.
- Y.C. Huang, X.Z. Wang, Application of fuzzy causal networks
to waste water treatment plants, Chem. Eng. Sci., 54 (1999)
2731-2738.
- G. Civelekoglu, Modeling of Treatment Processes with
Artificial Intelligence and Multiple Statistical Methods, Ph.D
Thesis, Suleyman Demirel University, Institute of Science and
Technology, Isparta (In Turkish), 2006.
- G. Civelekoglu, N.O. Yigit, E. Diamadopoulos, M. Kitis,
Modelling of COD removal in a biological wastewater treatment
plant using adaptive neuro-fuzzy inference system and artificial
neural network, Water Sci. Technol., 60 (2009) 1475–1487.
- T.-Y. Pai, S.C. Wang, C.F. Chiang, H.C. Su, L.F. Yu, P.J. Sung,
C.Y. Lin, H.C. Hu,. Improving Neural Network Prediction
of Effluent from Biological Wastewater Treatment Plant of
Industrial Park Using Fuzzy Learning Approach, Bioprocess
Biosyst. Eng., 32 (2009) 781–790.
- M.M. Hamed, M.G. Khalafallah, E.A. Hassanien, Prediction of
wastewater treatment plant performance using artificial neural
networks, Environ. Model. Softw., 19 (2004) 919–928.
- G. Onkal-Engin, I. Demir, S.N. Engin, Determination of the
relationship between sewage odour and BOD by neural
network, Environ. Model. Softw., 20 (2005) 843–850.
- F.S. Mjalli, S. Al-Asheh, H.E. Alfadala, Use of artificial neural
network black-box modeling for the prediction of wastewater
treatment plants performance, J. Environ. Manage., 83 (2007)
329–338.
- E.R. Rene, M.B. Saidutta, Prediction of Water Quality Indices
by Regression Analysis and Artificial Neural Networks, Int. J.
Environ. Res., 2 (2008) 183–188.
- E. Dogan, A. Ates, E.C. Yilmaz, B. Eren, Application of artificial
neural networks to estimate wastewater treatment plant inlet
biochemical oxygen demand, Environ. Prog. Banner, 27 (2008)
439–446.
- J.-W. Lee, C. Suh, Y.-S.T. Hong, H.-S. Shin, Sequential modelling
of a full-scale wastewater treatment plant using an artificial
neural network, Bioprocess Biosyst. Eng., 34 (2011) 963–973.
- A.K. Verma, T.N. Singh, Prediction of water quality from simple
field parameters, Environ. Earth Sci., 69 (2013) 821–829.
- H.Z. Abyaneh, Evaluation of multivariate linear regression
and artificial neural networks in prediction of water quality
parameters, J. Environ. Health Sci. Eng., 12 (2014) 40.
- X. Li, J. Song, A New ANN-Markov Chain Methodology
for Water Quality Prediction, 2015 Int. Joint Conf. on Neural
Networks (IJCNN), Killarney, Ireland, 2015.
- A. Vijayan, G.S. Mohan, Prediction of effluent treatment plant
performance in a diary industry using artificial neural network
technique, J. Civil Environ. Eng., (2016) 6.
- M. Ebrahimi, E.L. Gerber, T.D. Rockaway, Temporal
performance assessment of wastewater treatment plants by
using multivariate statistical analysis. J. Environ. Manage.,
193 (2017) 234–246.
- O.T. Baki, Modeling of Biochemical Oxygen Demand on
Wastewater Treatment Plant by using Different Artificial
Intelligence Methods: Antalya Hurma Wastewater Treatment
Plant Example, Master Thesis, Karadeniz Technical University,
Institute of Science and Technology, Trabzon, 2016 (In Turkish).
- O. Kisi, K.S. Parmar, Application of Least Square Support Vector
Machine and Multivariate Adaptive Regression Spline Models
in Long Term Prediction of River Water Pollution, J. Hydrol.,
534 (2016) 104-112.
- R.C. Deo, O. Kisi, V.P. Singh, Drought forecasting in eastern
Australia using multivariate adaptive regression spline, least
square support vector machine and M5Tree model, Atmos.
Res., 184 (2017) 149–175.
- D. Karaboga, An Idea on Honey Bee Swarm for Numerical
Optimization, Technical Report-TR06, 2005.
- C. Ozkan, O. Kisi, B. Akay, Neural networks with artificial
bee colony algorithm for modeling daily reference
evapotranspiration, Irrig. Sci., 29 (2011) 431–441.
- R.V. Rao, V. Patel, An elitisit teaching-learning-based
optimization algorithm for solving complex constrained
optimization problems, Int. J. Ind. Eng. Comput., 3 (2012)
535–560.
- S.C. Satapathy, A. Naik, Data Clustering Based on Teaching
Learning Based Optimization, SEMCCO 2011, Part II, LNCS
7077 (2011) 148–156.
- V. Togan, Design of Planar Steel Frames Using Teaching-Learning Based Optimization, Eng. Struct., 35 (2012) 225–232.
- E. Uzlu, M.I. Komurcu, M. Kankal, T. Dede, H.T. Ozturk,
Prediction of berm geometry using a set of laboratory tests
combined with teaching-learning-based optimization and
artificial bee colony algorithms, Appl. Ocean Res., 48 (2014)
103–113.
- A. Bayram, E. Uzlu, M. Kankal, T. Dede, Modeling stream
dissolved oxygen concentration using teaching–learning based
optimization algorithm, Environ. Earth Sci., 73 (2015) 6565–6576
- V.N. Sharda, R.M. Patel, S.O. Prasher, P.R. Ojasvi, C. Prakash.
Modeling runoff from middle Himalayan watersheds
employing artificial intelligence techniques, Agric. Water
Manage., 83 (2006) 233–242.
- A.H. Bhatt, R.V. Karanjekar, S. Altouqi, M.L. Sattler,
M.D.S. Hossain, V.P. Chen, Estimating landfill leachate BOD
and COD based on rainfall, ambient temperature, and waste
composition: exploration of a MARS statistical approach,
Environ. Technol. Innovation, 8 (2017) 1–16.