References

  1. L. Gong, L. Jun, Q. Yang, S. Wang, B. Ma, Y. Peng, Biomass characteristics and simultaneous nitrification-denitrification under long sludge retention time in an integrated reactor treating rural domestic sewage, Bioresour. Technol., 119 (2012) 277–284.
  2. R.W. Howarth, R. Marino, Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades, Limnol. Oceanogr., 51 (2006) 364–376.
  3. Y. Shao, Y. Shi, A. Mohammed, Y. Liu, Wastewater ammonia removal using an integrated fixed-film activated sludgesequencing batch biofilm reactor (IFAS-SBR): comparison of suspended flocs and attached biofilm, Int. Biodeterior. Biodegrad., 116 (2017) 38–47.
  4. Y. Zhu, Y. Zhang, H.-Q. Ren, J.-J. Geng, K. Xu, H. Huang, L.-L. Ding, Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor, Bioresour. Technol., 180 (2015) 345–351.
  5. A.A.L. Zinatizadeh, E. Ghaytooli, Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (MBBR): process modeling and optimization, J. Taiwan Inst. Chem. Eng., 53 (2015) 98–111.
  6. J.C. Leyva-Díaz, M.M. Muñío, J. González-López, J.M. Poyatos, Anaerobic/anoxic/oxic configuration in hybrid moving bed biofilm reactor-membrane bioreactor for nutrient removal from municipal wastewater, Ecol. Eng., 91 (2016) 449–458.
  7. J.P. Bassin, I.N. Dias, S.M.S. Cao, E. Senra, Y. Laranjeira, M. Dezotti, Effect of increasing organic loading rates on the performance of moving-bed biofilm reactors filled with different support media: assessing the activity of suspended and attached biomass fractions, Process Saf. Environ. Prot., 100 (2016) 131–141.
  8. Y. Zhang, J. Wang, S. Li, W. Zhang, J. Su, The study of oil refinery wastewater treatment by comnination process of A/O+MBBR, Technol. Water Treat., 36 (2010) 122–126.
  9. W.U. Wei, H.L. Zhang, A/O-MBBR process for treatment of tannery wastewater, J. Hebei Univ. Sci. Technol., 31 (2010) 274–277.
  10. Y. Chen, S. Lan, L. Wang, S. Dong, H. Zhou, Z. Tan, X. Li, A review: driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems, Chemosphere, 174 (2017) 173–182.
  11. L. Chu, J. Wang, Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor, Chem. Eng. J., 170 (2011) 220–225.
  12. State Environmental Protection Administration of China, Monitoring and Analytic Methods of Water and Wastewater, 4th ed., Environmental Science Press of China, Beijing, China, 2002.
  13. E. Ahmadi, M. Gholami, M. Farzadkia, R. Nabizadeh, A. Azari, Study of moving bed biofilm reactor in diethyl phthalate and diallyl phthalate removal from synthetic wastewater, Bioresour. Technol., 183 (2015) 129–135.
  14. F. Fang, W.T. Lu, Q. Shan, J.S. Cao, Characteristics of extracellular polymeric substances of phototrophic biofilms at different aquatic habitats, Carbohydr. Polym., 106 (2014) 1–6.
  15. Z.P. Wang, T. Zhang, Characterization of soluble microbial products (SMP) under stressful conditions, Water Res., 44 (2010) 5499–5509.
  16. X. Zhang, X. Chen, C. Zhang, H. Wen, W. Guo, H.H. Ngo, Effect of filling fraction on the performance of sponge-based moving bed biofilm reactor, Bioresour. Technol., 219 (2016) 762–767.
  17. N. Frison, E. Katsou, S. Malamis, D. Bolzonella, F. Fatone, Biological nutrients removal via nitrite from the supernatant of anaerobic co-digestion using a pilot-scale sequencing batch reactor operating under transient conditions, Chem. Eng. J., 230 (2013) 595–604.
  18. H. Zhou, X. Li, Z. Chu, J. Zhang, Effect of temperature downshifts on a bench-scale hybrid A/O system: process performance and microbial community dynamics, Chemosphere, 153 (2016) 500–507.
  19. J.C. Leyva-Díaz, A. González-Martínez, M.M. Muñío, J.M. Poyatos, Two-step nitrification in a pure moving bed biofilm reactormembrane bioreactor for wastewater treatment: nitrifying and denitrifying microbial populations and kinetic modeling, Appl. Microbiol. Biotechnol., 99 (2015) 10333–10343.
  20. M.F.R. Zuthi, H.H. Ngo, W.S. Guo, J. Zhang, S. Liang, A review towards finding a simplified approach for modelling the kinetics of the soluble microbial products (SMP) in an integrated mathematical model of membrane bioreactor (MBR), Int. Biodeterior. Biodegrad., 85 (2013) 466–473.
  21. C.S. Laspidou, B.E. Rittmann, A unified theory for extracellular polymeric substances soluble microbial products and active and inert biomass, Water Res., 36 (2002) 2711–2720.
  22. E.A.C. Emanuelsson, J.P. Arcangeli, A.G. Livingston, The anoxic extractive membrane bioreactor, Water Res., 37 (2003) 1231–1238.
  23. L. Duan, W. Jiang, Y. Song, S. Xia, S.W. Hermanowicz, The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor, Bioresour. Technol., 148 (2013) 436–442.
  24. D.J. Barker, D.C. Stuckey, A review of soluble microbial products (SMP) in wastewater treatment systems, Water Res., 33 (1999) 3063–3082.
  25. Q. He, Q. Song, S. Zhang, W. Zhang, H. Wang, Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources: reactor performance, extracellular polymeric substances and microbial successions, Chem. Eng. J., 331 (2018) 841–849.
  26. F. Qu, H. Liang, J. He, J. Ma, Z. Wang, H. Yu, G. Li, Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling, Water Res., 46 (2012) 2881–90.
  27. Y.L. Qiu, X.Z. Kuang, X.S. Shi, X.Z. Yuan, R.B. Guo, Terrimicrobium sacchariphilum gen. nov., sp. nov., an anaerobic bacterium of the class ‘Spartobacteria’ in the phylum Verrucomicrobia, isolated from a rice paddy field, Int. J. Syst. Evol. Microbiol., 64 (2014) 1718–1723.