References

  1. F.J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions, John Wiley & Sons, 1994.
  2. E. Loffredo, N. Senesi, The Role of Humic Substances in the Fate of Anthropogenic Organic Pollutants in Soil With Emphasis on Endocrine Disruptor Compounds, In: Soil and Water Pollution Monitoring, Protection and Remediation, Springer, Dordrecht, 2006, pp. 69–92.
  3. A. Schafer, Natural Organics Removal Using Membranes: Principles, Performance, and Cost, CRC Press, 2001.
  4. S. Assemi, P.G. Hartley, P.J. Scales, R. Beckett, Investigation of adsorbed humic substances using atomic force microscopy, Colloids Surf., A, 248 (2004) 17–23.
  5. Y. Zhan, Z. Zhu, J. Lin, Y. Qiu, J. Zhao, Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite, J. Environ. Sci., 22 (2010) 1327–1334.
  6. H. Gallard, U. von Gunten, Chlorination of natural organic matter: kinetics of chlorination and of THM formation, Water Res., 36 (2002) 65–74.
  7. T. Hartono, S. Wang, Q. Ma, Z. Zhu, Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution, J. Colloid Interface Sci., 333 (2009) 114–119.
  8. S. Wang, Q. Ma, Z.H. Zhu, Characteristics of coal fly ash and adsorption application, Fuel, 87 (2008) 3469–3473.
  9. C.S. André, M. Khraisheh, Removal of humic substances from drinking water using GAC and iron-coated adsorbents: consideration of two kinetic models and the influence of mixing, Environ. Eng. Sci., 26 (2009) 235–244.
  10. A. Norfazliana, A.R. Mukhlis, O. Mohd Hafiz Dzarfan, J. Juhana, A.A. Azian, Preparation, characterizations and performance evaluations of alumina hollow fiber membrane incorporated with UiO-66 particles for humic acid removal, J. Membr. Sci., 563 (2018) 162–174.
  11. E. Derakhshani, A. Naghizadeh, Optimization of humic acid removal by adsorption onto bentonite and montmorillonite nanoparticles, J. Mol. Liq., 259 (2018) 76–81.
  12. J.S. Salla, N. Padoin, S.M. Amorim, G. Li Puma, R.F.P.M. Moreira, Humic acids adsorption and decomposition on Mn2O3 and α-Al2O3 nanoparticles in aqueous suspensions in the presence of ozone, J. Environ. Chem. Eng., (2018), doi.org/10.1016/j.jece.2018.11.025.
  13. T. Ye, W. Chen, H. Xu, N. Geng, Y. Cai, Preparation of TiO2/graphene composite with appropriate N-doping ratio for humic acid removal, J. Mater. Sci., 53 (2018) 613–625.
  14. Y. Yan, G. Yuvaraja, C. Liu, L. Kong, K. Guo, G.M. Reddy, G.V. Zyryanov, Removal of Pb(II) ions from aqueous media using epichlorohydrin crosslinked chitosan Schiff’s base@ Fe3O4 (ECCSB@Fe3O4), Int. J. Biol. Macromol., 117 (2018) 1305–1313.
  15. B. Rouhi Broujeni, A. Nilchi, A.H. Hassani, R. Saberi, Preparation and characterization of chitosan/Fe2O3 nano composite for the adsorption of thorium (IV) ion from aqueous solution, Water Sci. Technol., 78 (2018) 708–720.
  16. H. Lu, J. Wang, F. Li, X. Huang, B. Tian, H. Hao, Highly efficient and reusable montmorillonite/Fe3O4/humic acid nanocomposites for simultaneous removal of Cr(VI) and aniline, Nanomaterials, 8 (2018) 537.
  17. T.D. Minh, B.K. Lee, M.T. Nguyen-Le, Methanol-dispersed of ternary Fe3O4@γ-APS/graphene oxide-based nanohybrid for novel removal of benzotriazole from aqueous solution, J. Environ. Manage., 209 (2018) 452–461.
  18. S. Hashemipour, H.A. Panahi, Fabrication of magnetite nanoparticles modified with copper based metal organic framework for drug delivery system of letrozole, J. Mol. Liq., 243 (2017) 102–107.
  19. A.W. Burton, K. Ong, T. Rea, I.Y. Chan, On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with onedimensional pore systems, Microporous Mesoporous Mater., 117 (2009) 75–90.
  20. G. Huang, H. Zhang, J.X. Shi, T.A.G. Langrish, Adsorption of chromium(VI) from aqueous solutions using cross-linked magnetic chitosan beads, Ind. Eng. Chem. Res., 48 (2009) 2646–2651.
  21. F. Arias, T.K. Sen, Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: a kinetic and equilibrium study, Colloids Surf., A, 348 (2009) 100–108.
  22. M. Ahmaruzzaman, V.K. Gupta, Rice husk and its ash as lowcost adsorbents in water and wastewater treatment, Ind. Eng. Chem. Res., 50 (2011) 13589–13613.
  23. Y. Ren, X. Wei, M. Zhang, Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent, J. Hazard. Mater., 158 (2008) 14–22.
  24. B.R. Broujeni, A. Nilchi, Preparation and characterization of polyacrylonitrile/aluminum oxide nanofiber adsorbent modified with 2-amino-3-methyl-1-hexanethiol for the adsorption of Thorium (IV) ion from aqueous solution, J. Environ. Eng., 144 (2018) 04018099-1–04018099-11.
  25. A. Imyim, E. Prapalimrungsi, Humic acids removal from water by aminopropyl functionalized rice husk ash, J. Hazard. Mater., 184 (2010) 775–781.
  26. U. Kurtan, A. Baykal, Fabrication and characterization of Fe3O4@APTES@PAMAM-Ag highly active and recyclable magnetic nanocatalyst: catalytic reduction of 4-nitrophenol, Mater. Res. Bull., 60 (2014) 79–87.
  27. P. Misaelides, Application of Particle and Laser Beams in Materials Technology, Springer, Dordrecht, 2013, 283 p.
  28. M. Khalkhali, S. Sadighian, K. Rostamizadeh, F. Khoeini, M. Naghibi, N. Bayat, M. Habibizadeh, M. Hamidi, Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy, Bioimpacts, 5 (2015) 141.
  29. B.-f. Pan, F. Gao, H.-c. Gu, Dendrimer modified magnetite nanoparticles for protein immobilization, J. Colloid Interface Sci., 284 (2005) 1–6.
  30. N. Parham, H.A. Panahi, A. Feizbakhsh, E. Moniri, Synthesis of high generation thermo-sensitive dendrimers for extraction of rivaroxaban from human fluid and pharmaceutic samples, J. Chromatogr. A, 1545 (2018) 12–21.
  31. N. Kemikli, H. Kavas, S. Kazan, A. Baykal, R. Ozturk, Synthesis of protoporphyrin coated superparamagnetic iron oxide nanoparticles via dopamine anchor, J. Alloys Compd., 502 (2010) 439–444.
  32. Y. Wang, P. Su, S. Wang, J. Wu, J. Huang, Y. Yang, Dendrimer modified magnetic nanoparticles for immobilized BSA: a novel chiral magnetic nano-selector for direct separation of racemates, J. Mater. Chem., 1 (2013) 5028–5035.
  33. Y. Jiang, J. Jiang, Q. Gao, M. Ruan, H. Yu, L. Qi, A novel nanoscale catalyst system composed of nanosized Pd catalysts immobilized on Fe3O4@SiO2–PAMAM, Nanotechnology, 19 (2008) 075714.
  34. S. Lian, Z. Kang, E. Wang, M. Jiang, C. Hu, L. Xu, Convenient synthesis of single crystalline magnetic Fe3O4 nanorods, Solid State Commun., 127 (2003) 605–608.
  35. L. Wang, J. Zhang, R. Zhao, C. Li, Y. Li, C. Zhang, Adsorption of basic dyes on activated carbon prepared from Polygonum orientale Linn: equilibrium, kinetic and thermodynamic studies, Desalination, 254 (2010) 68–74.
  36. J. Fan, W. Cai, J. Yu, Adsorption of N719 dye on anatase TiO2 nanoparticles and nanosheets with exposed (001) facets: equilibrium, kinetic, and thermodynamic studies, Chem. Asian J., 6 (2011) 2481–2490.
  37. B.R. Broujeni, A. Nilchi, A.H. Hassani, R. Saberi, Application of chitosan/Al2O3 nano composite for the adsorption of thorium (IV) ion from aqueous solution, Desal. Wat. Treat., 106 (2018) 125–133.
  38. J.-P. Fan, X.-K. Xu, R. Xu, X.-H. Zhang, J.-H. Zhu, Preparation and characterization of molecular imprinted polymer functionalized with core/shell magnetic particles (Fe3O4@SiO2@MIP) for the simultaneous recognition and enrichment of four taxoids in Taxus × media, Chem. Eng. J., 279 (2015) 567–577.
  39. N.K. Amin, Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics, J. Hazard. Mater., 165 (2009) 52–62.
  40. H. Cherifi, S. Hanini, F. Bentahar, Adsorption of phenol from wastewater using vegetal cords as a new adsorbent, Desalination, 244 (2009) 177–187.
  41. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  42. E. Metwally, T. El-Zakla, R.R. Ayoub, Thermodynamics study for the sorption of 134Cs and 60Co radionuclides from aqueous solutions, J. Nucl. Radiochem. Sci., 9 (2008) 1–6.
  43. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physiochim URSS, 12 (1940) 217–225.
  44. C.B. Vidal, A.L. Barros, C.P. Moura, A.C.A. de Lima, F.S. Dias, L.C.G. Vasconcellos, P.B.A. Fechine, R.F. Nascimento, Adsorption of polycyclic aromatic hydrocarbons from aqueous solutions by modified periodic mesoporous organosilica, J. Colloid Interface Sci., 357 (2011) 466–473.
  45. A. Torabian, H.A. Panahi, G.R. Nabi Bid Hendi, N. Mehrdadi, Synthesis, modification and graft polymerization of magnetic nano particles for PAH removal in contaminated water, J. Environ. Health Sci. Eng., 12 (2014) 105.
  46. M. Belhachemi, F. Addoun, Comparative adsorption isotherms and modeling of methylene blue onto activated carbons, Appl. Water Sci., 1 (2011) 111–117.
  47. S.V. Bhosale, D.N. Bankar, S.V. Bhoraskar, V.L. Mathe, Analysis of electrokinetic properties of NiFe2O4 nanoparticles synthesized by DC thermal plasma route and its use in adsorption of humic substances, J. Environ. Chem. Eng., 4 (2016) 1584–1593.
  48. M.S. Gasser, H.T. Mohsen, H.F. Aly, Humic acid adsorption onto Mg/Fe layered double hydroxide, Colloids Surf., A, 331 (2008) 195–201.
  49. M.A. Zulfikar, S. Afrita, D. Wahyuningrum, M. Ledyastuti, Preparation of Fe3O4-chitosan hybrid nano-particles used for humic acid adsorption, Environ. Nanotechnol. Monit. Manage., 6 (2016) 64–75.
  50. Z. Qi, T.P. Joshi, R. Liu, H. Liu, J. Qu, Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution, J. Hazard. Mater., 329 (2017) 193–204.
  51. M.A. Zulfikar, I. Afrianingsih, A. Bahri, M. Nasir, A. Alni, H. Setiyanto, Removal of humic acid from aqueous solution using dual PMMA/PVDF composite nanofiber: kinetics study, J. Phys. Conf. Ser., 1013 (2018), Article ID: 012202.