References

  1. S.G. Xue, F. Zhu, X.F. Kong, C. Wu, L. Huang, N. Huang, W. Hartley, A review of the characterization and revegetation of bauxite residues (Red mud), Environ. Sci. Pollut. Res., 23 (2016) 1120–1132.
  2. H.L. Zhou, D.Y. Li, Y.J. Tian, Y.F. Chen, Extraction of scandium from red mud by modified activated carbon and kinetics study, Rare Met., 27 (2008) 223–227.
  3. S.G. Xue, X.F. Kong, F. Zhu, W. Hartley, X.F. Li, Y.W. Li, Proposal for management and alkalinity transformation of bauxite residue in China, Environ. Sci. Pollut. Res., 23 (2016) 12822–12834.
  4. X.F. Kong, Y. Guo, S.G. Xue, W. Hartley, C. Wu, Y.Z. Ye, Q.Y. Cheng, Natural evolution of alkaline characteristics in bauxite residue, J. Cleaner Prod., 143 (2016) 224–230.
  5. X.H. Ding, G. Xu, M. Kizil, W. Zhou, X.Y. Guo, Lignosulfonate treating bauxite residue dust pollution: Enhancement of mechanical properties and wind erosion behavior, Water Air Soil Pollut., 229 (2018) 214–226.
  6. R.M. Rivera, B. Ulenaers, G. Ounoughene, K. Binnemans, T.V. Gerven, Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching, Miner. Eng., 119 (2018) 82–92.
  7. C.L. Zhu, Z.K. Luan, Y.Q. Wang, X.D. Shan, Removal of cadmium from aqueous solutions by adsorption on granular red mud (GRM), Sep. Purif. Technol., 57 (2007) 161–169.
  8. M. Lopez-Garcia, M. Martinez-Cabanas, T. Vilarino, P. Lodeiro, P. Rodriguez-Barro, R. Herrero, J.L. Barriada, New polymeric/inorganic hybrid sorbents based on red mud and nanosized magnetite for large scale applications in As(V) removal, Chem. Eng. J., 311 (2017) 117–125.
  9. O. Kazak, Y.R. Eker, I. Akin, H. Bingol, A. Tor, Green preparation of a novel red mud@carbon composite and its application for adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution, Environ. Sci. Pollut. Res., 24 (2017) 23057–23068.
  10. J. Li, L. Xu, P.P. Sun, P.Y. Zhai, X.P. Chen, H. Zhang, Z.S. Zhang, W.C. Zhu, Novel application of red mud: facile hydrothermalthermal conversion synthesis of hierarchical porous AlOOH and Al2O3 microspheres as adsorbents for dye removal, Chem. Eng. J., 321 (2017) 622–634.
  11. J.W. Liu, T. Mwamulima, Y.M. Wang, Y. Fang, S.X. Song, C.S. Peng, Removal of Pb(II) and Cr(VI) from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron, J. Mol. Liq., 243 (2017) 205–211.
  12. E. Petala, K. Dimos, A. Douvalis, T. Bakas, J. Tucek, R. Zbořil, M.A. Karakassides, Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution, J. Hazard. Mater., 261 (2013) 295–306.
  13. G.Z. Qu, L.Q. Kou, T.C. Wang, D.L. Liang, S.B. Hu, Evaluation of activated carbon fiber supported nanoscale zero-valent iron for chromium (VI) removal from groundwater in a permeable reactive column, J. Environ. Manage., 201 (2017) 378–387.
  14. R. Ahmad, Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP), J. Hazard. Mater., 171 (2009) 767–773.
  15. L.Y. Zhang, H.Y. Zhang, W. Guo, Y.L. Tian, Removal of malachite green and crystal violet cationic dyes from aqueous solution using activated sintering process red mud, Appl. Clay Sci., 93–94 (2014) 85–93.
  16. J.W. Liu, Y.M. Wang, X.L. Zhang, Y. Fang, T. Mwamulima, S.X. Song, C.S. Peng, Preparation of Fe@GAC and Fe@GAR and their application for removal of crystal violet from wastewater, Water Air Soil Pollut., 229 (2018) 38–49.
  17. J.W. Liu, Y.M. Wang, Y. Fang, T. Mwamulima, S.X. Song, C.S. Peng, Removal of crystal violet and methylene blue from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron, J. Mol. Liq., 250 (2018) 468–476.
  18. Y. Man, J.X. Feng, Effect of iron ore-coal pellets during reduction with hydrogen and carbon monoxide, Powder Technol., 301 (2016) 1213–1217.
  19. M. Ahmad, S.S. Lee, S.E. Oh, D. Mohan, D.H. Moon, Y.H. Lee, Y.S. Ok, Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes Environ. Sci. Pollut. Res., 20 (2013) 8364–8373.
  20. L.N. Shi, X. Zhang, Z.L. Chen, Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron, Water Res., 45 (2011) 886–892.
  21. S.C. Kang, Y.L. Zhao, W. Wang, T.T. Zhang, T.X. Chen, H. Yi, F. Rao, S.X. Song, Removal of methylene blue from water with montmorillonite nanosheets/chitosan hydrogels as adsorbent, Appl. Surf. Sci., 448 (2018) 203–211.
  22. Z.P. Hu, Z.M. Gao, X. Liu, Z.Y. Yuan, High-surface-area activated red mud for efficient removal of methylene blue from wastewater, Adsorpt. Sci. Technol., 36 (2017) 1–18.
  23. A. Tor, N. Danaoglu, G. Arslan, Y. Cengeloglu, Removal of fluoride from water by using granular red mud: batch and column studies, J. Hazard. Mater., 164 (2009) 271–278.
  24. H.Y. Shu, M.C. Chang, C.C. Chen, P.E. Chen, Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution, J. Hazard. Mater., 184 (2010) 499–505.
  25. X.W. Liu, Z.W. Chen, Z.L. Chen, M. Megharaj, R. Naidu, Remediation of Direct Black G in wastewater using kaolinsupported bimetallic Fe/Ni nanoparticles, Chem. Eng. J., 223 (2013) 764–771.
  26. Y.Y. Chen, D.J. Zhang, Adsorption kinetics, isotherm and thermodynamics studies of flavones from Vaccinium Bracteatum Thunb leaves on NKA-2 resin, Chem. Eng. J., 254 (2014) 579–585.
  27. J.P. Simonin, On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics, Chem. Eng. J., 300 (2016) 254–263.
  28. F.C. Wu, R.L. Tseng, R.S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153 (2012) 1–8.
  29. H.X. Zhang, Z.W. Niu, Z. Liu, Z.D. Wen, W.P. Li, X.Y. Wang, W.S. Wu, Equilibrium, kinetic and thermodynamic studies of adsorption of Th (IV) from aqueous solution onto kaolin, J. Radioanal. Nucl. Chem., 303 (2015) 87–97.
  30. Y.S. Ho, G. Mckay, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70 (1998) 115–124.
  31. A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Adsorption of hazardous dye crystal violet from wastewater by waste materials, J. Colloid Interface Sci., 343 (2010) 463–473.
  32. A.S. Ozcan, O. Gök, A. Ozcan, Adsorption of lead (II) ions onto 8-hydroxy quinoline-immobilized bentonite, J. Hazard. Mater., 161 (2009) 499.
  33. G.K. Sarma, S.S. Gupta, K.G. Bhattacharyya, Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension, J. Environ. Manage., 171 (2016) 1–10.
  34. M. Ghaedi, A. Ansari, M.H. Habibi, A.R. Asghari, Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study, J. Ind. Eng. Chem., 20 (2014) 17–28.
  35. State Environmental Protection Administration of China, GB 5085.3-2007, Hazardous Wastes Distinction Standard-Leaching Toxicity Distinction, China Environmental Science Press, Beijing, 2007.
  36. State Environmental Protection Administration of China, GB 3838-2002, Environmental Quality Standards for Surface Water, China Environmental Science Press, Beijing, 2002.
  37. Z.X. Chen, T. Wang, X.Y. Jin, Z.L. Chen, M. Megharaj, R. Naidu, Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution, J. Colloid Interface Sci., 398 (2013) 59–66.
  38. S. Chakraborty, S. Chowdhury, P.D. Saha, Adsorption of Crystal Violet from aqueous solution onto NaOH-modified rice husk, Carbohydr. Polym., 86 (2011) 1533–1541.
  39. V. Sabna, S.G. Thampi, S. Chandrakaran, Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: equilibrium and kinetic studies, Int. J. Biol. Macromol., 134 (2016) 390–397.
  40. C. Muthukumaran, M. Thirumarimurugan, Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent, J. Taiwan Inst. Chem. Eng., 63 (2016) 354–362.
  41. W. Wang, Y.l. Zhao, H.Y. Bai, T.T. Zhang, I.G. Valentin, S.X. Song, Methylene blue removal from water using the hydrogel beads of poly(vinyl alcohol)-sodium alginate-chitosan-montmorillonite, Carbohydr. Polym., 198 (2018) 518–528.