References

  1. X. Wang, P. Wang, J. Ma, H. Liu, P. Ning, Synthesis, characterization, and reactivity of cellulose modified nanozerovalent iron for dye discoloration, Appl. Surf. Sci., 345 (2015) 57–66.
  2. L. Han, S. Xue, S. Zhao, J. Yan, L. Qian, M. Chen, Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions, PLOS ONE, 2015.
  3. F. Ghanbari, M. Moradi, M. Manshouri, Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: compared with zero valent copper, J. Environ. Chem. Eng., 2 (2014) 1846–1851.
  4. R. Abbassi, A.K. Yadav, N. Kumar, S. Huang, P.R. Jaffe, Modeling and optimization of dye removal using “green”clay supported iron nano-particles, Ecol. Eng., 61 (2013) 366–370.
  5. J. Dotto, M.R. Fagundes-Klen, M.T. Veit, S.M. Palácio, R. Bergamasco, Performance of different coagulants in the coagulation/flocculation process of textile wastewater, J. Cleaner Prod., 208 (2019) 656–665.
  6. M.S. Tunç, Ö. Tepe, Removal of Color and COD from Wastewater of a Local Textile Factory by Coagulation, ICENS International Conference on Engineering and Natural Science, Skopje, Macedonia, May 15–19 2015, pp. 364–369.
  7. N.K. Amin, Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics, J. Hazard. Mater., 165 (2009) 52–62.
  8. V.K. Gupta, B. Gupta, A. Rastogic, S. Agarwald, A. Nayak, A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye–Acid Blue 113, J. Hazard. Mater., 186 (2011) 891–901.
  9. X. Liu, Z. Chen, Z. Chen, M. Megharaj, R. Naidu, Remediation of Direct Black G in wastewater using kaolin-supported bimetallic Fe/Ni nanoparticles, Chem. Eng. J., 223 (2013) 764–771.
  10. C. Zhang, Z. Zhu, H. Zhang, Z. Hu, Rapid decolorization of Acid Orange II aqueous solution by amorphous zero-valent iron, J. Environ. Sci., 24 (2012) 1021–1026.
  11. S.A. Kordkandi, M. Forouzesh, Application of full factorial design for methylene blue dye removal using heat-activated persulfate oxidation, J. Taiwan Inst. Chem. Eng., 45 (2014) 2597–2604.
  12. N.N. Patil, S.R. Shukla, Degradation of Reactive Yellow 145 dye by persulfate using microwave and conventional heating, J. Water Process Eng., 7 (2015) 314–327.
  13. P. Dobosy, C.É. Vizsolyi, I. Varga, J. Varga, G. Láng, G. Záray, Comparative study of ferrate and thermally activated persulfate treatments for removal of mono- and dichlorobenzenes from groundwater, Microchem. J., 136 (2018) 61–66.
  14. Q. Yang, Y. Zhong, H. Zhong, X. Li, W. Du, X. Li, R. Chen, G. Zeng, A novel pretreatment process of mature landfill leachate with ultrasonic activated persulfate: optimization using integrated Taguchi method and response surface methodology, Process Saf. Environ. Prot., 98 (2015) 268–275.
  15. K.E. Manz, K.E. Carter, Investigating the effects of heat activated persulfate on the degradation of furfural, a component of hydraulic fracturing fluid chemical additives, Chem. Eng. J., 327 (2017) 1021–1032.
  16. M.S. Tunç, O. Tepe, Removal of phenol from aqueous solution using persulfate activated with nanoscale zero-valent iron, Desal. Wat. Treat., 74 (2017) 269–277.
  17. J.-F. Yang, L.-M. Yang, S.-B. Zhang, L.-H. Ou, C.-B. Liu, L.-Y. Zheng, Y.-F. Yang, G.-G. Ying, S.-L. Luo, Degradation of azole fungicide fluconazole in aqueous solution by thermally activated persulfate, Chem. Eng. J., 321 (2017) 113–122.
  18. Y. Chen, P. Deng, P. Xie, R. Shang, Z. Wang, S. Wang, Heatactivated persulfate oxidation of methyl- and ethyl-parabens: effect, kinetics, and mechanism, Chemosphere, 168 (2017) 1628–1636.
  19. Y.C. Lee, S.L. Lo, J. Kuo, Y.L. Lin, Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20–40°C, Chem. Eng. J., 198–199 (2012) 27–32.
  20. S.Y. Oh, H.W. Kim, J.M. Park, H.S. Park, C. Yoon, Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron, J. Hazard. Mater., 168 (2009) 346–351.
  21. C. Tan, N. Gao, Y. Deng, W. Rong, S. Zhou, N. Lu, Degradation of antipyrine by heat activated persulfate, Sep. Purif. Technol., 109 (2013) 122–128.
  22. A. Ghauch, A.M. Tuqan, N. Kibbi, Ibuprofen removal by heated persulfate in aqueous solution: a kinetics study, Chem. Eng. J., 197 (2012) 483–492.
  23. C. Qi, X. Liu, C. Lin, X. Zhang, J. Ma, H. Tan, W. Ye, Degradation of sulfamethoxazole by microwave-activated persulfate: kinetics, mechanism and acute toxicity, Chem. Eng. J., 249 (2014) 6–14.
  24. C. Tan, N. Gao, Y. Deng, N. An, J. Deng, Heat-activated persulfate oxidation of diuron in water, Chem. Eng. J., 203 (2012) 294–300.
  25. J. Deng, Y. Shao, N. Gao, Y. Deng, S. Zhou, X. Hu, Thermally activated persulfate (TAP) oxidation of antiepileptic drug carbamazepine in water, Chem. Eng. J., 228 (2013) 765–771.
  26. M. Xu, H. Du, X. Gu, S. Lu, Z. Qiu, Q. Sui, Generation and intensity of active oxygen species in thermally activated persulfate systems for the degradation of trichloroethylene, RSC Adv., 4 (2014) 40511–40517.
  27. X. Xie, Y. Zhang, W. Huang, S. Huang, Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation, J. Environ. Sci., 24 (2012) 821–826.
  28. N. Zrinyi, A.L.-T. Pham, Oxidation of benzoic acid by heatactivated persulfate: effect of temperature on transformation pathway and product distribution, Water Res., 120 (2017) 43–51.
  29. Y. Fan, Y. Ji, D. Kong, J. Lu, Q. Zhou, Kinetic and mechanistic investigations of the degradation of sulfamethazine in heatactivated persulfate oxidation process, J. Hazard. Mater., 300 (2015) 39–47.
  30. H. Gao, J. Chen, Y. Zhang, X. Zhou, Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system, Chem. Eng. J., 306 (2016) 522–530.
  31. A. Ghauch, A.M. Tuqan, N. Kibbi, S. Geryes, Methylene blue discoloration by heated persulfate in aqueous solution, Chem. Eng. J., 213 (2012) 259–271.
  32. T. Shojaeimehr, F. Rahimpour, M.A. Khadivi, M. Sadeghi, A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimization using light expended clay aggregate (LECA), J. Ind. Eng. Chem., 20 (2014) 870–880.
  33. M. Elibol, Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology, Process Biochem., 39 (2004) 1057–1062.
  34. A. Mohammadi, S. Nemati, M. Mosaferi, A. Abdollahnejhad, M. Almasian, A. Sheikhmohammadi, Predicting the capability of carboxymethyl cellulose-stabilized iron nanoparticles for the remediation of arsenite from water using the response surface methodology (RSM) model: modeling and optimization, J. Contam. Hydrol., 203 (2017) 85–92.
  35. M. Tanyol, G. Uslu, V. Yönten, Optimization of lipase production on agroindustrial residue medium by Pseudomonas fluorescens (NRLL B-2641) using response surface methodology, Biotechnol. Biotechnol. Equip., 29 (2015) 64–71.
  36. L.A. Kafshgari, M. Ghorbani, A. Azizi, S. Agarwal, V.K. Gupta, Modeling and optimization of Direct Red 16 adsorption from aqueous solutions using nanocomposite of MnFe2O4/MWCNTs: RSM-CCRD model, J. Mol. Liq., 233 (2017) 370–377.
  37. Y. Wu, S. Zhou, F. Qin, X. Ye, K. Zheng, Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM), J. Hazard. Mater., 180 (2010) 456–465.
  38. I. Arslan-Alaton, G. Tureli, T. Olmez-Hanci, Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes: optimization by response surface methodology, J. Photochem. Photobiol., A, 202 (2009) 142–153.
  39. S. Garcia-Segura, L.C. Almeida, N. Bocchi, E. Brillas Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology, J. Hazard. Mater., 194 (2011) 109–118.
  40. H. Eskandarloo, A. Badiei, M.A. Behnajady, Application of response surface methodology for optimization of operational variables in photodegradation of phenazopyridine drug using TiO2/CeO2 hybrid nanoparticles, Desal. Wat. Treat., 54 (2015) 3300–3310.
  41. H. Eskandarloo, A. Badiei, M.A. Behnajady, Optimization of UV/inorganic oxidants system efficiency for photooxidative removal of an azo textile dye, Desal. Wat. Treat., 55 (2015) 210–226.
  42. B. Gözmen, Ö. Sönmez, M. Turabık, Response surface methodology for oxidative degradation of the Basic Yellow 28 dye by temperature and ferrous ion activated persulfate, Asian J. Chem., 25 (2013) 6831–6839.
  43. M. Tanyol, Rapid malachite green removal from aqueous solution by natural zeolite: process optimization by response surface methodology, Desal. Wat. Treat., 65 (2017) 294–303.
  44. O. Tepe, Adsorption of Remazol Brilliant Green 6B (RBG 6B) on chitin: process optimization using response surface methodology, Global NEST J., 20 (2018) 257–268.
  45. M. Panizza, G. Cerisola, Electro-Fenton degradation of synthetic dyes, Water Res., 43 (2009) 339–344.
  46. M. Ahmadi, M.H. Ardakani, A.A. Zinatizadeh, Optimization and kinetic evaluation of Acid Blue 193 degradation by UV/peroxydisulfate oxidation using response surface methodology, Adv. Environ. Technol., 2 (2015) 59–68.
  47. M.R. Sohrabi, S. Amiri, H.R.F. Masoumi, M. Moghri, Optimization of Direct Yellow 12 dye removal by nanoscale zero-valent iron using response surface methodology, J. Ind. Eng. Chem., 20 (2014) 2535–2542.
  48. O. Tepe, A.Y. Dursun, Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology, Environ. Sci. Pollut. Res., 21 (2014) 9911–9920.
  49. S. Agarwal, I. Tyagi, V.K. Gupta, A.R. Bagheri, M. Ghaedi, A. Asfaram, S. Hajati, A.A. Bazrafshan, Rapid adsorption of ternary dye pollutants onto copper (I) oxide nanoparticle loaded on activated carbon: experimental optimization via response surface methodology, J. Environ. Chem. Eng., 4 (2016) 1769–1779.
  50. A.R. Khataee, Application of central composite design for the optimization of photodestruction of a textile dye using UV/S2O82– process, Pol. J. Chem. Technol., 11 (2009) 38–45.
  51. A.R. Khataee, Optimization of UV‐promoted peroxydisulphate oxidation of C.I. Basic Blue 3 using response surface methodology, Environ. Technol., 31 (2010) 73–86.
  52. I. Peternel, I. Grcic, N. Koprivanac, Degradation of reactive azo dye by UV/peroxodisulfate system: an experimental design approach, React. Kinet. Mech. Catal., 100 (2010) 33–44.
  53. J. Sharma, I.M. Mishra, V. Kumar, Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82– oxidation systems, J. Environ. Manage., 156 (2015) 266–275.
  54. H. Zhou, Y. Shen, P. Lv, J. Wang, J. Fan, Degradation of 1-butyl-3-methylimidazolium chloride ionic liquid by ultrasound and zero-valent iron/activated carbon, Sep. Purif. Technol., 104 (2013) 208–213.
  55. X.-R. Xu, X.-Z. Li, Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion, Sep. Purif. Technol., 72 (2010) 105–111.