References
- J. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García, G.
Prados-Joya, R. Ocampo-Pérez, Pharmaceuticals as emerging
contaminants and their removal from water. A review,
Chemosphere, 93 (2013) 1268–1287.
- M. Petrović, M.D. Hernando, M.S. Díaz-Cruz, D. Barceló, Liquid
chromatography-tandem mass spectrometry for the analysis of
pharmaceutical residues in environmental samples: a review, J.
Chromatogr. A., 1067 (2005) 1–14.
- S. Baumgarten, H.F. Schröder, C. Charwath, M. Lange, S. Beier,
J. Pinnekamp, Evaluation of advanced treatment technologies
for the elimination of pharmaceutical compounds, in: Water Sci.
Technol., 56 (2007) 1–8.
- J. Reungoat, B.I. Escher, M. Macova, J. Keller, Biofiltration
of wastewater treatment plant effluent: effective removal of
pharmaceuticals and personal care products and reduction of
toxicity, Water Res., 45 (2011) 2751–2762.
- N. Chaukura, B.B. Mamba, S.B. Mishra, Porous materials for the
sorption of emerging organic pollutants from aqueous systems:
the case for conjugated microporous polymers, J. Water Process
Eng., 16 (2017) 223–232.
- M. Kah, G. Sigmund, F. Xiao, T. Hofmann, Sorption of ionizable
and ionic organic compounds to biochar, activated carbon and
other carbonaceous materials, Water Res., 124 (2017) 673–692.
- E. Wang, J. Bi, Sorption characteristics of pharmaceutically
active carboxyl acid compounds to biochar, Res. Environ. Sci.,
30 (2017) 1278–1286.
- K. Vikrant, K.H. Kim, Y.S. Ok, D.C.W. Tsang, Y.F. Tsang, B.S.
Giri, R.S. Singh, Engineered/designer biochar for the removal of
phosphate in water and wastewater, Sci. Total Environ., 616–617
(2018) 1242–1260.
- M. Inyang, B. Gao, A. Zimmerman, Y. Zhou, X. Cao, Sorption
and cosorption of lead and sulfapyridine on carbon nanotubemodified
biochars, Environ. Sci. Pollut. Res., 22 (2015)
1868–1876.
- X. Guo, H. Dong, C. Yang, Q. Zhang, C. Liao, F. Zha, L. Gao,
Application of goethite modified biochar for tylosin removal
from aqueous solution, Colloids Surf., A., 502 (2016) 81–88.
- A.A. Oladipo, A.O. Ifebajo, Highly efficient magnetic chicken
bone biochar for removal of tetracycline and fluorescent dye
from wastewater: two-stage adsorber analysis, J. Environ.
Manage., 209 (2018) 9–16.
- F. Reguyal, A.K. Sarmah, Site energy distribution analysis and
influence of Fe3O4 nanoparticles on sulfamethoxazole sorption
in aqueous solution by magnetic pine sawdust biochar, Environ.
Pollut., 233 (2017) 510–519.
- L. Cui, T. Chen, G. Quan, B. Xiao, Y. Ma, M. Pan, Y. Liu, B. Liu,
C. Yin, J. Yan, X. Han, C. Ding, J. Cui, M. Bian, Q. Hussain,
Renewable material-derived biochars for the efficient removal
of 2,4-dichlorophene from aqueous solution: adsorption/desorption mechanisms, BioResources, 12 (2017) 4912–4925.
- F. Mansour, M. Al-Hindi, R. Yahfoufi, G.M. Ayoub, M.N. Ahmad,
The use of activated carbon for the removal of pharmaceuticals
from aqueous solutions: a review, Rev. Environ. Sci. Biotechnol.,
17 (2018) 109–145.
- L.K. Kimbell, Y. Tong, B.K. Mayer, P.J. McNamara, Biosolidsderived
biochar for triclosan removal from wastewater, Environ.
Eng. Sci., 35 (2018) doi:10.1089/ees.2017.0291.
- M. Naghdi, M. Taheran, R. Pulicharla, T. Rouissi, S.K. Brar, M.
Verma, R.Y. Surampalli, Pine-wood derived nanobiochar for
removal of carbamazepine from aqueous media: adsorption
behavior and influential parameters, Arabian J. Chem., (2016)
(in press). doi:10.1016/j.arabjc.2016.12.025.
- A.U. Rajapaksha, M. Vithanage, M. Ahmad, D.C. Seo, J.S. Cho,
S.E. Lee, S.S. Lee, Y.S. Ok, Enhanced sulfamethazine removal
by steam-activated invasive plant-derived biochar, J. Hazard.
Mater., 290 (2015) 43–50.
- M.B. Ahmed, J.L. Zhou, H.H. Ngo, M.A.H. Johir, K. Sornalingam,
Sorptive removal of phenolic endocrine disruptors by
functionalized biochar: competitive interaction mechanism,
removal efficacy and application in wastewater, Chem. Eng. J.,
335 (2018) 801–811.
- M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M.A.H. Johir,
K. Sornalingam, M. Sahedur Rahman, Chloramphenicol
interaction with functionalized biochar in water: sorptive
mechanism, molecular imprinting effect and repeatable
application, Sci. Total Environ., 609 (2017) 885–895.
- W.-Z. He, L.-L. He, W.-H. Li, Q.-J.-H. Liao, J.-G. Shang,
Adsorption of sulfamerazine from water by biochar derived
from astragalus membranaceus residue, Zhongguo Huanjing
Kexue/China Environ. Sci., 36 (2016).
- H. Wang, Y. Chu, C. Fang, F. Huang, Y. Song, X. Xue, Sorption
of tetracycline on biochar derived from rice straw under
different temperatures, PLoS One. (2017). doi:10.1371/journal.pone.0182776.
- C. Peiris, S.R. Gunatilake, T.E. Mlsna, D. Mohan, M.
Vithanage, Biochar based removal of antibiotic sulfonamides
and tetracyclines in aquatic environments: a critical review,
Bioresour. Technol., 246 (2017) 150–159.
- D.H. Carrales-Alvarado, R. Ocampo-Pérez, R. Leyva-Ramos,
J. Rivera-Utrilla, Removal of the antibiotic metronidazole by
adsorption on various carbon materials from aqueous phase, J.
Colloid Interface Sci., 436 (2014) 276–285.
- H. Dong, C. Zhang, K. Hou, Y. Cheng, J. Deng, Z. Jiang, L. Tang,
G. Zeng, Removal of trichloroethylene by biochar supported
nanoscale zero-valent iron in aqueous solution, Sep. Purif.
Technol., 188 (2017) 188–196.
- G. Liu, H. Zheng, X. Zhai, Z. Wang, Characteristics and
mechanisms of microcystin-LR adsorption by giant reedderived
biochars: Role of minerals, pores, and functional
groups, J. Cleaner Prod., 176 (2018) 463–473.
- S.Y. Oh, Y.D. Seo, Sorption of halogenated phenols and
pharmaceuticals to biochar: affecting factors and mechanisms,
Environ. Sci. Pollut. Res., 23 (2016) 951–961.
- A. Arca-Ramos, G. Eibes, G. Feijoo, J.M. Lema, M.T. Moreira,
Potentiality of a ceramic membrane reactor for the laccasecatalyzed
removal of bisphenol A from secondary effluents,
Appl. Microbiol. Biotechnol., 99 (2015) 9299–9308.
- L. Bo, N. Gao, J. Liu, B. Gao, The competitive adsorption of
pharmaceuticals on granular activated carbon in secondary
effluent, Desal. Wat. Treat., 57 (2016) 17023–17029.
- O. Muter, A. Berzins, S. Strikauska, I. Pugajeva, V. Bartkevics,
G. Dobele, J. Truu, M. Truu, C. Steiner, The effects of woodchipand
straw-derived biochars on the persistence of the herbicide
4-chloro-2-methylphenoxyacetic acid (MCPA) in soils,
Ecotoxicol. Environ. Saf., 109 (2014) 93–100.
- I. Pugajeva, J. Rusko, I. Perkons, E. Lundanes, V. Bartkevics,
Determination of pharmaceutical residues in wastewater
using high performance liquid chromatography coupled to
quadrupole-Orbitrap mass spectrometry, J. Pharm. Biomed.
Anal., 133 (2017) 64–74.
- A.G. Karunanayake, O.A. Todd, M.L. Crowley, L.B. Ricchetti,
C.U. Pittman, R. Anderson, T.E. Mlsna, Rapid removal of
salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid
from wastewater using magnetized fast pyrolysis biochar from
waste Douglas fir, Chem. Eng. J., 319 (2017) 75–88.
- S. Mondal, K. Bobde, K. Aikat, G. Halder, Biosorptive uptake
of ibuprofen by steam activated biochar derived from mung
bean husk: Equilibrium, kinetics, thermodynamics, modeling
and eco-toxicological studies, J. Environ. Manage., 182 (2016)
581–594.
- S. Mondal, K. Aikat, K. Siddharth, K. Sarkar, R. DasChaudhury,
G. Mandal, G. Halder, Optimizing ranitidine hydrochloride
uptake of Parthenium hysterophorus derived N-biochar
through response surface methodology and artificial neural
network, Process Saf. Environ. Prot., 107 (2017) 388–401.
- M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M.A.H. Johir, D.
Belhaj, Competitive sorption affinity of sulfonamides and
chloramphenicol antibiotics toward functionalized biochar for
water and wastewater treatment, Bioresour. Technol., 238 (2017)
306–312.
- E. Loffredo, E. Taskin, Adsorptive removal of ascertained and
suspected endocrine disruptors from aqueous solution using
plant-derived materials, Environ. Sci. Pollut. Res., 24 (2017)
19159–19166.
- D. Shan, S. Deng, T. Zhao, B. Wang, Y. Wang, J. Huang, G. Yu,
J. Winglee, M.R. Wiesner, Preparation of ultrafine magnetic
biochar and activated carbon for pharmaceutical adsorption
and subsequent degradation by ball milling, J. Hazard. Mater.,
305 (2016) 156–163.
- S. Álvarez-Torrellas, A. Rodríguez, G. Ovejero, J.M. Gómez, J.
García, Removal of caffeine from pharmaceutical wastewater by
adsorption: influence of NOM, textural and chemical properties
of the adsorbent, Environ. Technol., 37 (2016) 1618–1630.
- L. Wu, B. Li, E. Bi, Effect of molecular dissociation and sorbent
carbonization on bisolute sorption of pharmaceuticals by
biochars, Water. Air. Soil Pollut., 228 (2017) 242.
- S. Zorita, L. Mårtensson, L. Mathiasson, Occurrence and
removal of pharmaceuticals in a municipal sewage treatment
system in the south of Sweden., Sci. Total Environ., 407 (2009)
2760–2770.
- S. Suárez, M. Carballa, F. Omil, J.M. Lema, How are
pharmaceutical and personal care products (PPCPs) removed
from urban wastewaters?, Rev. Environ. Sci. Biotechnol., 7
(2008) 125–138.
- D.M. González-Pérez, J.I. Pérez, M.A. Gómez, Behaviour of the
main nonsteroidal anti-inflammatory drugs in a membrane
bioreactor treating urban wastewater at high hydraulic- and
sludge-retention time, J. Hazard. Mater. 336 (2017) 128–138.
- E.-P. Wang, J.-Y., Bi, Evaluating biochar-water sorption
coefficients of pharmaceutically active compounds by using a
linear free energy relationship, Huanjing Kexue/Environmental
Sci., 37 (2016) 4349–4356.
- D. Zhang, R.M. Gersberg, W.J. Ng, S.K. Tan, Removal of
pharmaceuticals and personal care products in aquatic plantbased
systems: a review, Environ. Pollut., 184 (2014) 620–639.
- F. Lian, B. Xing, Black carbon (biochar) in water/soil
environments: molecular structure, sorption, stability, and
potential risk, Environ. Sci. Technol., 51 (2017) 13517–13532.