References

  1. J. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García, G. Prados-Joya, R. Ocampo-Pérez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere, 93 (2013) 1268–1287.
  2. M. Petrović, M.D. Hernando, M.S. Díaz-Cruz, D. Barceló, Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review, J. Chromatogr. A., 1067 (2005) 1–14.
  3. S. Baumgarten, H.F. Schröder, C. Charwath, M. Lange, S. Beier, J. Pinnekamp, Evaluation of advanced treatment technologies for the elimination of pharmaceutical compounds, in: Water Sci. Technol., 56 (2007) 1–8.
  4. J. Reungoat, B.I. Escher, M. Macova, J. Keller, Biofiltration of wastewater treatment plant effluent: effective removal of pharmaceuticals and personal care products and reduction of toxicity, Water Res., 45 (2011) 2751–2762.
  5. N. Chaukura, B.B. Mamba, S.B. Mishra, Porous materials for the sorption of emerging organic pollutants from aqueous systems: the case for conjugated microporous polymers, J. Water Process Eng., 16 (2017) 223–232.
  6. M. Kah, G. Sigmund, F. Xiao, T. Hofmann, Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials, Water Res., 124 (2017) 673–692.
  7. E. Wang, J. Bi, Sorption characteristics of pharmaceutically active carboxyl acid compounds to biochar, Res. Environ. Sci., 30 (2017) 1278–1286.
  8. K. Vikrant, K.H. Kim, Y.S. Ok, D.C.W. Tsang, Y.F. Tsang, B.S. Giri, R.S. Singh, Engineered/designer biochar for the removal of phosphate in water and wastewater, Sci. Total Environ., 616–617 (2018) 1242–1260.
  9. M. Inyang, B. Gao, A. Zimmerman, Y. Zhou, X. Cao, Sorption and cosorption of lead and sulfapyridine on carbon nanotubemodified biochars, Environ. Sci. Pollut. Res., 22 (2015) 1868–1876.
  10. X. Guo, H. Dong, C. Yang, Q. Zhang, C. Liao, F. Zha, L. Gao, Application of goethite modified biochar for tylosin removal from aqueous solution, Colloids Surf., A., 502 (2016) 81–88.
  11. A.A. Oladipo, A.O. Ifebajo, Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: two-stage adsorber analysis, J. Environ. Manage., 209 (2018) 9–16.
  12. F. Reguyal, A.K. Sarmah, Site energy distribution analysis and influence of Fe3O4 nanoparticles on sulfamethoxazole sorption in aqueous solution by magnetic pine sawdust biochar, Environ. Pollut., 233 (2017) 510–519.
  13. L. Cui, T. Chen, G. Quan, B. Xiao, Y. Ma, M. Pan, Y. Liu, B. Liu, C. Yin, J. Yan, X. Han, C. Ding, J. Cui, M. Bian, Q. Hussain, Renewable material-derived biochars for the efficient removal of 2,4-dichlorophene from aqueous solution: adsorption/desorption mechanisms, BioResources, 12 (2017) 4912–4925.
  14. F. Mansour, M. Al-Hindi, R. Yahfoufi, G.M. Ayoub, M.N. Ahmad, The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: a review, Rev. Environ. Sci. Biotechnol., 17 (2018) 109–145.
  15. L.K. Kimbell, Y. Tong, B.K. Mayer, P.J. McNamara, Biosolidsderived biochar for triclosan removal from wastewater, Environ. Eng. Sci., 35 (2018) doi:10.1089/ees.2017.0291.
  16. M. Naghdi, M. Taheran, R. Pulicharla, T. Rouissi, S.K. Brar, M. Verma, R.Y. Surampalli, Pine-wood derived nanobiochar for removal of carbamazepine from aqueous media: adsorption behavior and influential parameters, Arabian J. Chem., (2016) (in press). doi:10.1016/j.arabjc.2016.12.025.
  17. A.U. Rajapaksha, M. Vithanage, M. Ahmad, D.C. Seo, J.S. Cho, S.E. Lee, S.S. Lee, Y.S. Ok, Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar, J. Hazard. Mater., 290 (2015) 43–50.
  18. M.B. Ahmed, J.L. Zhou, H.H. Ngo, M.A.H. Johir, K. Sornalingam, Sorptive removal of phenolic endocrine disruptors by functionalized biochar: competitive interaction mechanism, removal efficacy and application in wastewater, Chem. Eng. J., 335 (2018) 801–811.
  19. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M.A.H. Johir, K. Sornalingam, M. Sahedur Rahman, Chloramphenicol interaction with functionalized biochar in water: sorptive mechanism, molecular imprinting effect and repeatable application, Sci. Total Environ., 609 (2017) 885–895.
  20. W.-Z. He, L.-L. He, W.-H. Li, Q.-J.-H. Liao, J.-G. Shang, Adsorption of sulfamerazine from water by biochar derived from astragalus membranaceus residue, Zhongguo Huanjing Kexue/China Environ. Sci., 36 (2016).
  21. H. Wang, Y. Chu, C. Fang, F. Huang, Y. Song, X. Xue, Sorption of tetracycline on biochar derived from rice straw under different temperatures, PLoS One. (2017). doi:10.1371/journal.pone.0182776.
  22. C. Peiris, S.R. Gunatilake, T.E. Mlsna, D. Mohan, M. Vithanage, Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review, Bioresour. Technol., 246 (2017) 150–159.
  23. D.H. Carrales-Alvarado, R. Ocampo-Pérez, R. Leyva-Ramos, J. Rivera-Utrilla, Removal of the antibiotic metronidazole by adsorption on various carbon materials from aqueous phase, J. Colloid Interface Sci., 436 (2014) 276–285.
  24. H. Dong, C. Zhang, K. Hou, Y. Cheng, J. Deng, Z. Jiang, L. Tang, G. Zeng, Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution, Sep. Purif. Technol., 188 (2017) 188–196.
  25. G. Liu, H. Zheng, X. Zhai, Z. Wang, Characteristics and mechanisms of microcystin-LR adsorption by giant reedderived biochars: Role of minerals, pores, and functional groups, J. Cleaner Prod., 176 (2018) 463–473.
  26. S.Y. Oh, Y.D. Seo, Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms, Environ. Sci. Pollut. Res., 23 (2016) 951–961.
  27. A. Arca-Ramos, G. Eibes, G. Feijoo, J.M. Lema, M.T. Moreira, Potentiality of a ceramic membrane reactor for the laccasecatalyzed removal of bisphenol A from secondary effluents, Appl. Microbiol. Biotechnol., 99 (2015) 9299–9308.
  28. L. Bo, N. Gao, J. Liu, B. Gao, The competitive adsorption of pharmaceuticals on granular activated carbon in secondary effluent, Desal. Wat. Treat., 57 (2016) 17023–17029.
  29. O. Muter, A. Berzins, S. Strikauska, I. Pugajeva, V. Bartkevics, G. Dobele, J. Truu, M. Truu, C. Steiner, The effects of woodchipand straw-derived biochars on the persistence of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) in soils, Ecotoxicol. Environ. Saf., 109 (2014) 93–100.
  30. I. Pugajeva, J. Rusko, I. Perkons, E. Lundanes, V. Bartkevics, Determination of pharmaceutical residues in wastewater using high performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry, J. Pharm. Biomed. Anal., 133 (2017) 64–74.
  31. A.G. Karunanayake, O.A. Todd, M.L. Crowley, L.B. Ricchetti, C.U. Pittman, R. Anderson, T.E. Mlsna, Rapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas fir, Chem. Eng. J., 319 (2017) 75–88.
  32. S. Mondal, K. Bobde, K. Aikat, G. Halder, Biosorptive uptake of ibuprofen by steam activated biochar derived from mung bean husk: Equilibrium, kinetics, thermodynamics, modeling and eco-toxicological studies, J. Environ. Manage., 182 (2016) 581–594.
  33. S. Mondal, K. Aikat, K. Siddharth, K. Sarkar, R. DasChaudhury, G. Mandal, G. Halder, Optimizing ranitidine hydrochloride uptake of Parthenium hysterophorus derived N-biochar through response surface methodology and artificial neural network, Process Saf. Environ. Prot., 107 (2017) 388–401.
  34. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M.A.H. Johir, D. Belhaj, Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment, Bioresour. Technol., 238 (2017) 306–312.
  35. E. Loffredo, E. Taskin, Adsorptive removal of ascertained and suspected endocrine disruptors from aqueous solution using plant-derived materials, Environ. Sci. Pollut. Res., 24 (2017) 19159–19166.
  36. D. Shan, S. Deng, T. Zhao, B. Wang, Y. Wang, J. Huang, G. Yu, J. Winglee, M.R. Wiesner, Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling, J. Hazard. Mater., 305 (2016) 156–163.
  37. S. Álvarez-Torrellas, A. Rodríguez, G. Ovejero, J.M. Gómez, J. García, Removal of caffeine from pharmaceutical wastewater by adsorption: influence of NOM, textural and chemical properties of the adsorbent, Environ. Technol., 37 (2016) 1618–1630.
  38. L. Wu, B. Li, E. Bi, Effect of molecular dissociation and sorbent carbonization on bisolute sorption of pharmaceuticals by biochars, Water. Air. Soil Pollut., 228 (2017) 242.
  39. S. Zorita, L. Mårtensson, L. Mathiasson, Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden., Sci. Total Environ., 407 (2009) 2760–2770.
  40. S. Suárez, M. Carballa, F. Omil, J.M. Lema, How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters?, Rev. Environ. Sci. Biotechnol., 7 (2008) 125–138.
  41. D.M. González-Pérez, J.I. Pérez, M.A. Gómez, Behaviour of the main nonsteroidal anti-inflammatory drugs in a membrane bioreactor treating urban wastewater at high hydraulic- and sludge-retention time, J. Hazard. Mater. 336 (2017) 128–138.
  42. E.-P. Wang, J.-Y., Bi, Evaluating biochar-water sorption coefficients of pharmaceutically active compounds by using a linear free energy relationship, Huanjing Kexue/Environmental Sci., 37 (2016) 4349–4356.
  43. D. Zhang, R.M. Gersberg, W.J. Ng, S.K. Tan, Removal of pharmaceuticals and personal care products in aquatic plantbased systems: a review, Environ. Pollut., 184 (2014) 620–639.
  44. F. Lian, B. Xing, Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk, Environ. Sci. Technol., 51 (2017) 13517–13532.