References

  1. N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309 (2013) 197–207.
  2. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281 (2006) 70–87.
  3. S. Loeb, Large-scale power production by pressure-retarded osmosis, using river water and seawater passing through spiral modules, Desalination, 143 (2002) 115–122.
  4. S. Loeb, Production of energy from concentrated brines by pressure retarded osmosis I. Preliminary technical and economic correlations, J. Membr. Sci., 1 (1976) 49–63.
  5. K. Saito, M. Irie, S. Zaitsu, H. Sakai, H. Hayashi, A. Tanioka, Power generation with salinity gradient by pressure retarded osmosis using concentrated brine from SWRO system and treated sewage as pure water, Desal. Wat. Treat., 41 (2012) 114–121.
  6. M. Kurihara, M. Hanakawa, Mega-ton Water System: Japanese national research and development project on seawater desalination and wastewater reclamation, Desalination, 308 (2012) 131–137.
  7. A. Tanioka, Preface to the special issue on “Pressure Retarded Osmosis in Megaton Water System Project,” Desalination, 389 (2016) 15–17.
  8. H. Sakai, 2015, Energy Recovery by PRO Systems JDA/Megaton Project/PRO System, IDA Conference, APDA & JDA Joint Forum.
  9. J. Chen, B. Gu, E.J. LeBoeuf, H. Pan, S. Dai, Spectroscopic characterization of the structural and functional properties of natural organic matter fractions, Chemosphere, 48 (2002) 59–68.
  10. J. Chen, E.J. LeBoeuf, S. Dai, B. Gu, Fluorescence spectroscopic studies of natural organic matter fractions, Chemosphere, 50 (2003) 639–647.
  11. L. Fan, T. Nguyen, F.A. Roddick, J.L. Hariis, Low-pressure membrane filtration of secondary effluent in water reuse: pre-treatment for fouling reduction, J. Membr. Sci., 320 (2008) 135–142.
  12. T. Persson, M. Wedborg, Multivariate evaluation of the fluorescence of aquatic organic matter, Anal. Chim. Acta., 434 (2001) 179–192.
  13. S.K. Ishii, T.H. Boyer, Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: a critical review, Environ. Sci. Technol., 46 (2012) 2006–2017.
  14. C.A. Stedman, S. Markager, R. Bro, Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy, Mar. Chem., 82 (2003) 239–254.
  15. S.S. Kavurmaci, N.C. Birben, A. Tomruk, M. Bekbolet, Characterization of organic matter in natural waters by EEM fluorescence properties, Desal. Wat. Treat., 57 (2016) 2428–2436.
  16. R.H. Peris, C. Halle, H. Budman, C. Moresoli, S. Peldszus, P.M. Huck, R.L. Legge, Identifying fouling events in a membranebased drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices, Water Res., 44 (2010) 185–194.
  17. H. Yu, F. Qu, H. Chang, S. Chao, X.L.G. Aou, H. Liang, Understanding ultrafiltration membrane fouling by soluble microbial product and effluent organic matter using fluorescence excitation-emission matrix coupled with parallel factor analysis, Int. Biodeterior. Biodegrad., 102 (2015) 56–63.
  18. M. Bieroza, A. Baker, J. Bridgeman, Relating freshwater organic matter fluorescence to organic carbon removal efficiency in drinking water treatment, Sci. Total Environ., 407 (2009) 1765–1774.
  19. S. Baghoth, S. Sharma, G. Amy, Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC, Water Res., 45 (2011) 797–809.
  20. R.K. Henderson, N. Subhi, A. Antony, S.J. Khan, K.R. Murphy, G.L. Leslie, V. Chen, R.M. Stuetz, P. Le-Clech, Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterization techniques, J. Membr. Sci., 328 (2011) 50–59.
  21. J.-Y. Tian, M. Ernst, F. Cui, M. Jekel, Correlation of relevant membrane foulants with UF membrane fouling in different waters, Water Res., 47 (2013) 1218–1228.
  22. S.A. Baghoth, S.K. Sharma, G.L. Amy, Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC, Water Res., 45 (2011) 797–809.
  23. K.R. Murphy, K.D. Butler, R.G.M. Spencer, C.A. Stedmon, J.R. Boehme, G.R. Aiken, Measurement of dissolved organic matter fluorescence in aquatic environments: an inter-laboratory comparison, Environ. Sci. Technol., 44 (2010) 9405–9412.
  24. T. Larsson, M.D. Wedborg, D. Turner, Correction of inner-filter effect in fluorescence excitation-emission matrix spectrometry using Raman scatter, Anal. Chim. Acta., 583 (2007) 357–363.
  25. A.J. Lawaetz, C.A. Stedmon, Fluorescence intensity calibration using the Raman scatter peak of water, Appl. Spectrosc., 63 (2009) 936–940.
  26. C.A. Stedmon, R. Bro, Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial, Limnol. Oceanogr. Methods., 6 (2008) 572–579.
  27. R. Bro, PARAFAC, Tutorial and applications, Chemom. Intell. Lab. Syst., 38 (1997) 149–171.
  28. H. Yu, F. Qu, H. Liang, Z.S. Han, J. Ma, S. Shao, H. Chang, G. Li, Understanding ultrafiltration membrane fouling by extracellular organic matter of Microcystis aeruginosa using fluorescence excitation-emission matrix coupled with parallel factor analysis, Desalination, 337 (2014) 67–75.
  29. A. Achilli, T.Y. Cath, A.E. Childress, M. Elimelech, Power generation with pressure retarded osmosis: an experimental and theoretical investigation, J. Membr. Sci., 343 (2009) 42–52.
  30. J.A. Leenheer, J.P. Croue, Characterizing aquatic dissolved organic matter, Environ. Sci. Technol., 37 (2003) 18A–26A.
  31. C.A. Stedmon, S. Markager, Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis, Limnol. Oceanogr., 50 (2005) 686–697.
  32. K.R. Murphy, A. Hambly, S. Singh, R.K. Henderson, A. Baker, R. Stuetz, S.J. Khan, Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model, Environ. Sci. Technol., 45 (2011) 2909–2916.
  33. H. Xu, H. Cai, G. Yu, H. Jiang, Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis, Water Res., 47 (2013) 2005–2014.
  34. C.A. Stedmon, S. Markager, Tracing the production and degradation of autochthonous fractions of dissolved organic matter using fluorescence analysis, Limnol. Oceanogr., 50 (2005) 1415–1426.
  35. K.R. Murphy, C.A. Stedmon, T.D. Waite, G.M. Ruiz, Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy, Mar. Chem., 108 (2008) 40–58.
  36. G.H. Yu, P.J. He, L.M. Shao, Novel insights into sludge dewaterability by fluorescence excitation-emission matrix combined with parallel factor analysis, Water Res., 44 (2010) 797–806.
  37. R.M. Cory, D.M. McKnight, Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter, Environ. Sci. Technol., 39 (2005) 8142–8149.
  38. P.G. Coble, Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy, Mar. Chem., 51 (1996) 325–346.
  39. S.A. Baghoth, M. Dignum, A. Grefte, J. Kroesbergen, G.L. Amy, Characterization of NOM in a drinking water treatment process train with no disinfectant residual, Water Sci. Technol. Water Supply, 9 (2009) 379–386.
  40. P. Kowalczuk, W.J. Cooper, M.J. Durako, A.E. Kahn, M. Gonsior, H. Young, Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: relationships between fluorescence and its components, absorption coefficients and organic carbon concentrations, Mar. Chem., 118 (2010) 22–36.
  41. R.A. Al-Juboori, T. Yusaf, P.A. Pittaway, Exploring the correlations between common UV measurements and chemical fractionation for natural waters, Desal. Wat. Treat., 57 (2016) 16324–16335.