References

  1. J.L. Acero, F.J. Benitez, F.J. Real, F. Teva, Coupling of adsorption, coagulation, and ultrafiltration processes for the removal of emerging contaminants in a secondary effluent, Chem. Eng. J., 210 (2012) 1–8.
  2. E.C. Lima, Removal of emerging contaminants from the environment by adsorption, Ecotoxicol. Environ. Saf., 150 (2018) 1–17.
  3. V. Geissen, H. Mol, E. Klumpp, G. Umlauf, M. Nadal, M. van der Ploeg, S.E. van de Zee, C.J. Ritsema, Emerging pollutants in the environment: a challenge for water resource management, J. Soil Water Conserv., 3 (2015) 57–65.
  4. B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Res., 72 (2015) 3–27.
  5. H. Bagheri, A. Afkhami, A. Noroozi, Removal of pharmaceutical compounds from hospital wastewaters using nanomaterials: a review, Anal. Bioanal. Chem. Res., 3 (2016) 1–18.
  6. A. Carmalin Sophia, E.C. Lima, N. Allaudeen, S. Rajan, Application of graphene-based materials for adsorption of pharmaceutical traces from water and wastewater-a review, Desal. Wat. Treat., 57 (2016) 27573–27586.
  7. K.D. Brown, J. Kulis, B. Thomson, T.H. Chapman, D.B. Mawhinney, Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico, Sci. Total Environ., 366 (2006) 772–783.
  8. A. Fakhri, S. Adami, Adsorption and thermodynamic study of Cephalosporins antibiotics from aqueous solution onto MgO nanoparticles, J. Taiwan Inst. Chem. Eng., 45 (2014) 1001–1006.
  9. M.S. Legnoverde, S. Simonetti, E.I. Basaldella, Influence of pH on cephalexin adsorption onto SBA-15 mesoporous silica: theoretical and experimental study, Appl. Surf. Sci., 300 (2014) 37–42.
  10. M.R. Samarghandi, T.J. Al-Musawi, A. Mohseni-Bandpi, M. Zarrabi, Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles, J. Mol. Liq., 211 (2015) 431–441.
  11. N. Hanna, P. Sun, Q. Sun, X. Li, X. Yang, X. Ji, H. Zou, J. Ottoson, L.E. Nilsson, B. Berglund, Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk, Environ. Int., 114 (2018) 131–142.
  12. L. Sellaoui, E.C. Lima, G.L. Dotto, A.B. Lamine, Adsorption of amoxicillin and paracetamol on modified activated carbons: equilibrium and positional entropy studies, J. Mol. Liq., 234 (2017) 375–381.
  13. T.J. Al-Musawi, H. Kamani, E. Bazrafshan, A.H. Panahi, M.F. Silva, G. Abi, Optimization the effects of physicochemical parameters on the degradation of cephalexin in sono-Fenton reactor by using Box-Behnken response surface methodology, Catal. Lett., 149 (2019) 1186–1196.
  14. A.R. Ribeiro, B. Sures, T.C. Schmidt, Cephalosporin antibiotics in the aquatic environment: a critical review of occurrence, fate, ecotoxicity and removal technologies, Environ. Pollut., 241 (2018) 1153–1166.
  15. R. Khosravi, A. Zarei, M. Heidari, A. Ahmadfazeli, M. Vosughi, M. Fazlzadeh, Application of ZnO and TiO2 nanoparticles coated onto montmorillonite in the presence of H2O2 for efficient removal of cephalexin from aqueous solutions, Korean J. Chem. Eng., 35 (2018) 1000–1008.
  16. M. Leili, M. Fazlzadeh, A. Bhatnagar, Green synthesis of nanozero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions, Environ. Technol., 39 (2018) 1158–1172.
  17. M. Conde-Cid, C. Álvarez-Esmorís, R. Paradelo-Núñez, J.C. Nóvoa-Muñoz, M. Arias-Estévez, E. Álvarez-Rodríguez, M.J. Fernández-Sanjurjo, A. Núñez-Delgado, Occurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain), J. Cleaner Prod., 197 (2018) 491–500.
  18. A.A. Babaei, E.C. Lima, A. Takdastan, N. Alavi, G. Goudarzi, M. Vosoughi, G. Hassani, M. Shirmardi, Removal of tetracycline antibiotic from contaminated water media by multi-walled carbon nanotubes: operational variables, kinetics, and equilibrium studies, Water Sci. Technol., 74 (2016) 1202–1216.
  19. C. Saucier, P. Karthickeyan, V. Ranjithkumar, E.C. Lima, G.S. dos Reis, I.A.S. de Brum, Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon, Environ. Sci. Pollut. Res., 24 (2017) 5918–5932.
  20. A. Takdastan, A.H. Mahvi, E.C. Lima, M. Shirmardi, A.A. Babaei, G. Goudarzi, A. Neisi, M. Heidari Farsani, M. Vosoughi, Preparation, characterization, and application of activated carbon from low-cost material for the adsorption of tetracycline antibiotic from aqueous solutions, Water Sci. Technol., 74 (2016) 2349–2363.
  21. I. Michael-Kordatou, P. Karaolia, D. Fatta-Kassinos, The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater, Water Res., 129 (2018) 208–230.
  22. L. Zhao, J. Deng, P. Sun, J. Liu, Y. Ji, N. Nakada, Z. Qiao, H. Tanaka, Y. Yang, Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: systematic review and bibliometric analysis, Sci. Total Environ., 627 (2018) 1253–1263.
  23. D.S.S. Raghavan, G. Qiu, Y.-P. Ting, Fate and removal of selected antibiotics in an osmotic membrane bioreactor, Chem. Eng. J., 334 (2018) 198–205.
  24. V. Sharma, R.V. Kumar, K. Pakshirajan, G. Pugazhenthi, Integrated adsorption-membrane filtration process for antibiotic removal from aqueous solution, Powder Technol., 321 (2017) 259–269.
  25. F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L. Dias, C. Saucier, J.B. da Costa, Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: highly efficient removal of captopril from aqueous solutions, J. Cleaner Prod., 197 (2018) 919–929.
  26. A.B. Leite, C. Saucier, E.C. Lima, G.S. dos Reis, C.S. Umpierres, B.L. Mello, M. Shirmardi, S.L. Dias, C.H. Sampaio, Activated carbons from avocado seed: optimisation and application for removal of several emerging organic compounds, Environ. Sci. Pollut. Res., 25 (2018) 7647–7661.
  27. C.S. Umpierres, P.S. Thue, E.C. Lima, G.S.d. Reis, I.A. de Brum, W.S.d. Alencar, S.L. Dias, G.L. Dotto, Microwave-activated carbons from tucumã (Astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions, Environ. Technol., 39 (2018) 1173–1187.
  28. S. Ashrafi, H. Kamani, A. Mahvi, The optimization study of direct red 81 and methylene blue adsorption on NaOH–modified rice husk, Desal. Wat. Treat, 57 (2016) 738–746.
  29. E. Bazrafshan, D. Balarak, A.H. Panahi, H. Kamani, A.H. Mahvi, Fluoride removal from aqueous solutions by cupric oxide nanoparticles, Fluoride, 49 (2016) 233–244.
  30. M. Shirmardi, N. Alavi, E.C. Lima, A. Takdastan, A.H. Mahvi, A.A. Babaei, Removal of atrazine as an organic micro-pollutant from aqueous solutions: a comparative study, Process Saf. Environ. Prot, 103 (2016) 23–35.
  31. H.N. Bhatti, J. Hayat, M. Iqbal, S. Noreen, S. Nawaz, Biocomposite application for the phosphate ions removal in aqueous medium, J. Mater. Res. Technol., 7 (2018) 300–307.
  32. S. Noreen, H.N. Bhatti, M. Zuber, M. Zahid, M. Asgher, Removal of actacid orange-RL dye using biocomposites: modeling studies, Pol. J. Environ. Stud., 26 (2017) 2125–2134.
  33. H.N. Bhatti, A. Jabeen, M. Iqbal, S. Noreen, Z. Naseem, Adsorptive behavior of rice bran-based composites for malachite green dye: isotherm, kinetic and thermodynamic studies, J. Mol. Liq., 237 (2017) 322–333.
  34. N. Jiang, R. Shang, S.G. Heijman, L.C. Rietveld, High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review, Water Res., 144 (2018) 145–161.
  35. V. Arya, L. Philip, Adsorption of pharmaceuticals in water using Fe3O4 coated polymer clay composite, Microporous Mesoporous Mater., 232 (2016) 273–280.
  36. S.O. Akpotu, B. Moodley, Application of as-synthesised MCM-41 and MCM-41 wrapped with reduced graphene oxide/graphene oxide in the remediation of acetaminophen and aspirin from aqueous system, J. Environ. Manage., 209 (2018) 205–215.
  37. M. Barczak, M. Wierzbicka, P. Borowski, Sorption of diclofenac onto functionalized mesoporous silicas: experimental and theoretical investigations, Microporous Mesoporous Mater., 264 (2018) 254–264.
  38. Y.-D. Chiang, H.-Y. Lian, S.-Y. Leo, S.-G. Wang, Y. Yamauchi, K.C.-W. Wu, Controlling particle size and structural properties of mesoporous silica nanoparticles using the Taguchi method, J. Phys. Chem. C., 115 (2011) 13158–13165.
  39. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
  40. S.S. Abu Amr, H.A. Aziz, M.J.K. Bashir, Application of response surface methodology (RSM) for optimization of semi-aerobic landfill leachate treatment using ozone, Appl. Water Sci., 4 (2014) 231–239.
  41. M. Moradi, M. Fazlzadehdavil, M. Pirsaheb, Y. Mansouri, T. Khosravi, K. Sharafi, Response surface methodology (RSM) and its application for optimization of ammonium ions removal from aqueous solutions by pumice as a natural and low-cost adsorbent, Arch. Environ. Prot., 42 (2016) 33–43.
  42. H. Kamani, G.H. Safari, G. Asgari, S.D. Ashrafi, Data on modeling of enzymatic elimination of Direct Red 81 using response surface methodology, Data Brief, 18 (2018) 80–86.
  43. S.D. Ashrafi, H. Kamani, J. Jaafari, A.H. Mahvi, Experimental design and response surface modeling for optimization of fluoroquinolone removal from aqueous solution by NaOHmodified rice husk, Desal. Wat. Treat., 57 (2016) 16456–16465.
  44. M.H. Dehghani, M. Faraji, A. Mohammadi, H. Kamani, Optimization of fluoride adsorption onto natural and modified pumice using response surface methodology: isotherm, kinetic and thermodynamic studies, Korean J. Chem. Eng., 34 (2017) 454–462.
  45. H. Kamani, E. Bazrafshan, S.D. Ashrafi, F. Sancholi, Efficiency of sono-nano-catalytic process of TiO2 nano-particle in removal of erythromycin and metronidazole from aqueous solution, J. Mazandaran Univ. Med. Sci., 27 (2017) 140–154.
  46. F. Havasi, A. Ghorbani-Choghamarani, F. Nikpour, Synthesis and characterization of nickel complex anchored onto MCM-41 as a novel and reusable nanocatalyst for the efficient synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones, Microporous Mesoporous Mater., 224 (2016) 26–35.
  47. C.S. Umpierres, L.D. Prola, M.A. Adebayo, E.C. Lima, G.S. dos Reis, D.D. Kunzler, G. Dotto, L.T. Arenas, E.V. Benvenutti, Mesoporous Nb2O5/SiO2 material obtained by sol-gel method and applied as adsorbent of crystal violet dye, Environ. Technol., 38 (2017) 566–578.
  48. B. Marler, U. Oberhagemann, S. Vortmann, H. Gies, Influence of the sorbate type on the XRD peak intensities of loaded MCM- 41, Microporous Mater., 6 (1996) 375–383.
  49. L.-C. Juang, C.-C. Wang, C.-K. Lee, Adsorption of basic dyes onto MCM-41, Chemosphere, 64 (2006) 1920–1928.
  50. B. Royer, E.C. Lima, N.F. Cardoso, T. Calvete, R.E. Bruns, Statistical design of experiments for optimization of batch adsorption conditions for removal of reactive red 194 textile dye from aqueous effluents, Chem. Eng. Commun., 197 (2010) 775–790.
  51. C. Nguyen, C.G. Sonwane, S.K. Bhatia, D.D. Do, Adsorption of benzene and ethanol on MCM-41 material, Langmuir, 14 (1998) 4950–4952.
  52. Y. Rashtbari, S. Hazrati, S. Afshin, M. Fazlzadeh, M. Vosoughi, Data on cephalexin removal using powdered activated carbon (PPAC) derived from pomegranate peel, Data Brief, 20 (2018) 1434–1439.
  53. R.S. Al-Khalisy, A.M.A. Al-Haidary, A.H. Al-Dujaili, Aqueous phase adsorption of cephalexin onto bentonite and activated carbon, Sep. Sci. Technol., 45 (2010) 1286–1294.
  54. G. Nazari, H. Abolghasemi, M. Esmaieli, Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shellbased activated carbon, J. Taiwan Inst. Chem. Eng., 58 (2016) 357–365.