References
- A.E. Kabeel, E.M.S. El-Said, Technological aspects of advancement
in low capacity solar thermal desalination units, Int. J.
Sustain. Energy, 32(5) (2013) 315–332.
- A.E. Kabeel, E.M. S. El-Said, Development strategies and solar
thermal energy utilization for water desalination systems in
remote regions: a review, Desal. Water Treat., 52(22–24) (2014)
4053–4070.
- A.E. Kabeel, Z.M. Omara, F.A. Essa, A.S. Abdullah, Solar still
with condenser – A detailed review, Renew. Sustain. Energy
Rev., 59 (2016) 839–857.
- D.D.W. Rufuss, S. Iniyan, L. Suganthi, P.A. Davies, Solar stills:
A comprehensive review of designs, performance and material
advances, Renew. Sustain. Energy Rev., 63 (2016) 464–496.
- S.W. Sharshir, N. Yang, G. Peng, A.E. Kabeel, Factors affecting
solar stills productivity and improvement techniques: a
detailed review, Appl. Thermal Eng., 100 (2016) 267–284.
- H. Panchal, I. Mohan, Various methods applied to solar still for
augmentation of distillate output, Desalination, 415 (2017) 76–89.
- M. Edalatpour, K. Aryana, A. Kianifar, G.N. Tiwari, O. Mahian,
S. Wongwises, Solar stills: A review of the latest developments
in numerical simulations, Solar Energy, 135 (2016) 897–922.
- C. Elango, N. Gunasekaran, K. Sampathkumar, Thermal models
of solar still—A comprehensive review, Renew. Sustain.
Energy Rev., 47 (2015) 856–911.
- S.W. Sharshir, A.H. Elsheikh, G. Peng, N. Yang, M.O.A. El-Samadony,
A.E. Kabeel, Thermal performance and exergy analysis
of solar stills – A review, Renew. Sustain. Energy Rev., 73
(2017) 521–544.
- P.T. Tsilingiris, Analysis of the heat and mass transfer processes
in solar stills – The validation of a model, Solar Energy,
83 (2009) 420–431.
- S.V. Patankar, Numerical Heat Transfer and Fluid Flow. Hemisphere,
New York, 1980.
- R.H. Pletcher, J.C. Tannehill, D. Anderson, Computational
Fluid Mechanics and Heat Transfer, 3rd ed. (Series in Computational
and Physical Processes in Mechanics and Thermal
Sciences), CRC press, 2013.
- H.K. Versteeg, W. Malalasekera, An introduction to computational
fluid dynamics: The finite volume method, Longman
Scientific & Technical, 1995.
- J.R. Grace, F. Taghipour, Verification and validation of CFD
models and dynamic similarity for fluidized beds, Powder
Technol., 139 (2004) 99–110.
- W.H. McAdams, Heat Transmission, 3rd ed. McGraw-Hill, 1958.
- R.V. Dunkle, Solar water distillation: the roof type still and a
multiple impact diffusion still. In: ASME Proc. Int. Heat Transfer
Conf. Part V, Int. Develop. Heat Transfer, University of Colorado,
Boulder Colorado, 1961.
- A.T. Shawaqfeh, M.M. Farid, New development in the theory
of heat and mass transfer in solar stills, Sol. Energy, 55 (1995)
527–535.
- J. Rheinlander, Numerical calculation of heat and mass transfer
in solar stills, Solar Energy, 28(2) (1982) 173–179.
- P.I. Cooper, Heat and mass transfer within a single impact
solar still envelope. Introduced at the First Australian Conference
on Heat and Mass Transfer, Melbourne, 1973.
- S. Kumar, G.N. Tiwari, Estimation of convective mass transfer
in solar distillation systems, Solar Energy, 57(6) (1996) 459–464.
- M.A.S. Malik, G.N. Tiwari, A. Kumar, M.S. Sodha, Solar Distillation.
Pergamon Press, 1982, Oxford, NY.
- R. Tripathi, G.N. Tiwari, Effect of water depth on internal heat
and mass transfer for active solar distillation, Desalination,
173 (2005) 187–200.
- R. Tripathy, G.N. Tiwari, Performance evaluation of a solar still
by using the concept of solar fractionation, Desalination, 169
(2004) 69–80.
- R. Tripathy, G.N. Tiwari, Thermal modelling of passive and
active solar stills for different depths of water by using the
concept of solar fraction, Solar Energy, 80 (2006) 956–967.
- A.K. Tiwari, G.N. Tiwari, Effect of water depths on heat and
mass transfer in a passive solar still: in summer climatic condition,
Desalination, 195 (2006) 78–94.
- N.H. Mostafa, B. Djebedjian, E.M.S. El-Said, M. Abou Rayan,
Experimental and numerical study of spoiler impact on ship
stability: effect of spoiler inclination angle, CFD Lett., 1(1)
(2009) 29–42.
- C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the
dynamics of natural boundaries, J. Comput. Phys., 39 (1981)
201–225.
- W.J. Rider, D.B. Kothe, S.J. Mosso, J.H. Cerrutti, J.I. Hochstein,
Accurate solution algorithms for incompressible multiphase
fluid flows, AIAA Paper 95-0699, 1995.
- W.F. Noh, P.R. Woodward, SLIC (Simple Line Interface
Method), in A.I. van de Vooren and P.J. Zandbergen, (Editors),
Lecture Notes in Physics, 59 (1976) 330–340.
- D.B. Kothe, W.J. Rider, S.J. Mosso, J.S. Brock, Volume tracking
of interfaces having surface tension in two and three dimensions,
AIAA Paper 96-0859, 1996.
- J. Rheinlander, Numerical calculation of heat and mass transfer
in solar stills, Sol. Energy, 28 (1982) 173–179.
- P.I. Cooper, Heat and mass transfer within a single-impact
solar still envelope-I. Austral. Conf. on Heat and Mass Transfer,
Melbourne, 1973.
- B. Djebedjian, M. Abou Rayan, Theoretical investigation on the
performance prediction of solar still, Desalination, 128 (2000)
139–145.
- N. Rahbar, J.A. Esfahani, Estimation of convective heat transfer
coefficient in a single-slope solar still: a numerical study,
Desal. Water Treat., 50 (2012) 387–396.
- N. Rahbar, J.A. Esfahani, Productivity estimation of a single-slope solar still: Theoretical and numerical analysis,
Energy, 49 (2013) 289–297.
- R.A. Juárez, G. Álvarez, J. Xamán, I.H. López, Numerical study
of conjugate heat and mass transfer in a solar still device,
Desalination, 325 (2013) 84 –94.
- C. Béghein, F. Haghighat, F. Allard, Numerical study of double-
diffusive natural convection in a square cavity, Int. J. Heat
Mass Trans., 35 (1992) 833–846.
- I. Sezai, A.A. Mohamad, Double diffusive convection in a cubic
enclosure with opposing temperature and concentration gradients,
Phys. Fluids, 12 (2000) 2210–2223.
- S. Rashidi, M. Bovand, J.A. Esfahani, Optimization of partitioning
inside a single slope solar still for performance
improvement, Desalination, 395 (2016) 79–91.
- S. Rashidi, J.A. Esfahani, N. Rahbar, Partitioning of solar
still for performance recovery: Experimental and numerical
investigations with cost analysis, Solar Energy, 153 (2017)
41–50.
- S. Rashidi, J.A. Esfahani, Spatial entropy generation analysis
for the design improvement of a single slope solar still, Environ.
Progress Sustain. Energy, (2017) 1– 9.
- A. Palacio, J.L. Fernandez, Numerical analysis of greenhouse-type solar stills with high inclination, Solar Energy,
50(6) (1993) 469–476.
- Y.A. Abakr, A.F. Ismail, Theoretical and experimental investigation
of a novel multistage evacuated solar still, J. Solar
Energy Eng., 2005 (127) 381–385.
- N. Setoodeh, R. Rahimi, A. Ameri, Modeling and determination
of heat transfer coefficient in a basin solar still using CFD,
Desalination, 268 (2011) 103–110.
- H.N. Panchal, P.K. Shah, Modelling and verification of single
slope solar still using ANSYS-CFX, Int. J. Energy Environ., 2(6)
(2011) 985–998.
- H.N. Panchal, P.K. Shah, Experimental and ANSYS CFD simulation
analysis of hemispherical solar still, Int. J. Renew.
Energy, 8(1) (2013) 1–14.
- J.D. LeFevre, Modeling of complex pentahedron solar still covers
to optimize distillate, Master thesis, Brigham Young University,
USA, 2012.
- J. LeFevre, W.J. Bowman, M.R. Jones, Numerical simulation of
convection in triangular cavities to predict SS performance, J.
Thermophys. Heat Trans., 27(3) (2013) 482–488.
- A.R. Badusha, T.V. Arjunan, Performance analysis of single
slope solar still, Int. J. Mech. Eng. Rob. Res., (2013) 74–81.
- N. Gokilavani, D. Prabhakaran, T. Kannadasan, Experimental
studies and CFD modeling on solar distillation
system, Int. J. Innov. Res. Sci. Eng. Technol., 3(9) (2014)
15818–15822.
- M. Shakaib, M.A. Khan, Modeling of fluid flow and temperature
profiles in SSs using CFD, Proceedings of 2015
International Conference on Chemical, Metallurgy and Environmental
Engineering (ICMAEE-15), Istanbul (Turkey), (2015)
272–276.
- A. Kumar, CFD modeling and validation of a single slope solar
still, M.Sc. thesis, Malaviya National Institute of Technology,
India, 2015.
- N. Rahbar, J.A. Esfahani, E.F. Bafghi, Estimation of convective
heat transfer coefficient and water-productivity in a tubular
solar still – CFD simulation and theoretical analysis, Solar
Energy, 113 (2015) 313–323.
- E.F. Baggy, N. Rahbar, J.A. Esfahani, Productivity improvement
of a tubular solar still, using CFD simulation, J. Model.
Eng., 10 (2013) 37–48.
- C.U. Maheswari, B.V. Reddy, A.N. Sree, A.V. Reddy, A.S.P.
Reddy, C.R.R. Prasad, B.H.K. Varma, CFD analysis of single
basin double slope solar still, Invent. J. Res. Technol. Eng. Manage.
(IJRTEM), 1(2) (2016) 01–05.
- Y. Taamneh, Influence of Jordanian zeolite on the performance
of a solar still: experiments and CFD simulation studies, Water
Sci. Technol.: Water Supply, 16(6) (2016) 1700–1709.
- O. Bait, M.S. Ameur, Numerical investigation of a multi-stage
solar still under Batna climatic conditions: Impact of radiation
term on mass and heat energy balances, Energy, 98 (2016)
308–323.
- P. Malaiyappan, N. Elumalai, Numerical investigations: basin
materials of a single-basin and single-slope solar still, Desal.
Water Treat., 57(45) (2016) 21211–21233.
- J. Arya, B. Sreenath, Performance study of a solar still using
ANSYS, Int. J. Scient. Res. Devel., 4(4) (2016) 1397–1399.
- H.N. Panchal, N. Patel, ANSYS CFD and experimental comparison
of various parameters of solar still, Int. J. Ambient
Energy, (2017) 1–7.
- V.R. Khare, A.P. Singh, H. Kumar, R. Khatri, Modelling and
performance augmentation of single slope solar still using
CFD, Energy Procedia., 109 (2017) 447–455.
- S. Rashidi, S. Akara, M. Bovand, R. Ellahi, Volume of fluid
model to simulate the nanofluid flow and entropy generation
in a single slope solar still, Renew. Energy, 115 (2018)
400–410.
- Fluent, Ansys. “Ansys Fluent Theory Guide.” ANSYS Inc.,
USA, 2011.
- D.C. Wilcox, Turbulence Modeling for CFD, 2nd ed., 1998.
- M.S. Houssain, W. Rodi, Equations for turbulent buoyant flows
and their modelling. Rep. SFB 80/T/46, Univ. Karlsruhe.
- P.J. Roache, Verification and validation in computational science
and engineering, Hermosa Publishers, Albuquerque,
NM, 1998.
- S. Rashidi, J.A. Esfahani, N. Rahbar, Enhancement of solar still
by reticular porous media: Experimental investigation with
exergy and economic analysis, Applied Thermal Engineering,
in press, 2017.
- J.A. Clark, The steady-state performance of a solar still, J. Solar
Energy, 44(1) (1990) 43.
- S. Kumar, G.N. Tiwari, H.N. Singh, Estimation of convective
mass transfer in solar distillation system, Solar Energy, 57(6)
(1996) 459.
- A. Shruti, Computer Based Thermal Modeling of an Advanced
Solar Distillation System: An Experimental Study. Diss. IIT
Delhi, New Delhi, 1999.
- K. Islam, T. Fukuhara, Production analysis of a tubular solar
still, Doboku Gakkai Ronbunshuu B, 63 (2007) 108–119.
- K.S. Reddy, K.R. Kumar, T.S. O’Donovan, T.K. Mallick, Performance
analysis of an evacuated multiestage solar water
desalination system, Desalination, 288 (2012) 80–92.
- M.I.M. Shatat, K. Mahkamov, Determination of rational design
parameters of a multiestage solar water desalination still using
transient mathematical modelling, Renew Energy, 35 (2010)
52–61.
- A.E. Bergles, Recent developments in enhanced heat transfer,
Heat Mass Trans., 47 (2011) 1001–1008.
- M.H. Hamed, A.E. Kabeel, E.M.S. El-Said, Enhancement of
heat and mass transfer performance on humidification tower
using injection of different carrier gases into water bed, Appl.
Thermal Eng., 111 (2017) 455–476.
- A.W. Ezzat, N.N. Abdullah, S.L. Ghashim, Effect of air bubbles
on heat transfer coefficient in turbulent convection flow, J.
Eng., 23(1) (2017) 8–28.
- E.M.S. El-Said, M. Abdulaziz, Thermo-electric solar-based
freshwater generator for drinking needs in dry regions: A
numerical study, ARWADEX11, 11th Water Desalination Conference
in Arab Countries, Cairo, Egypt, 2017.
- D.D Ganji, A. Malvandi, Heat Transfer Augmentation Using
Nanofluid Flow in Microchannels – Simulation of Heat and
Mass Transfer, Elsevier, 2016.
- D. Duan, P. Ge, W. Bi, J. Ji, Numerical investigation on the
heat transfer augmentation mechanism of planar elastic tube
bundle by flow-induced vibration, Int. J. Thermal Sci., 112(16)
(2017) 450–459.
- M. Talebi, M. Setareh, R.H. Abardeh, M.S. Avval, Numerical
investigation of natural convection heat transfer in a cylindrical
enclosure due to ultrasonic vibrations, Ultrasonics, 76
(2017) 52–62.
- G.P. Narayan, R.K. McGovern, J.H. Lienhard, S.M. Zubair,
Helium as a carrier gas in humidification dehumidification
desalination systems, Proc. ASME 2011 International Mechanical
Engineering Congress & Exposition, Denver, Colorado,
USA, IMECE2011-62875.
- S.A. El-Agouza, M. Abugderah, Experimental analysis of
humidification process by air passing through seawater,
Energy Convers. Manage., 49 (2008) 3698–3703.
- M.K. Abu Arabi, K.V. Reddy, Performance evaluation of desalination
processes in view of the humidification/dehumidification
cycle with different carrier gases, Desalination, 156 (2003)
281–293.
- H.M. Abd-ur-Rehman, F.A. Al-Sulaiman Mathematical Modeling
of Bubbler Humidifier for Humidification-Dehumidification
(HDH) Water Desalination System, Proceedings of the 1st
International Conference on Mechanical and Transportation
Engineering, Kuala Lumpur, Malaysia, 2015.
- A. Khalil, S.A. El-Agouz, Y.A.F. El-Samadony, Ahmed Abdo,
Solar water desalination using an air bubble column humidifier,
Desalination, 372 (2015) 7–16.
- W. Yuanxin, B. Chen One, M.H. Al-Dahhan, Predictions of
radial gas hold up profiles in bubble column reactors, Chem.
Eng. Sci., 56 (2001) 1207–1210.
- B. Moshtari, E.G. Babakhani, J.S. Moghaddas, Experimental
study of gas hold-up and bubble behavior in gas-liquid bubble
column, Petrol. Coal, 51(1) (2009) 22–28.
- K.M.S. Eldalil, Improving the performance of SS using vibratory
harmonic effect, Desalination, 251 (2010) 3–11.
- K.M.S. Eldalil, New concept for improving SS performance by
using vibratory harmonic effect theoretical analysis, Part-2,
Thirteenth International Water Technology Conference, IWTC
13 2009, Hurghada, Egypt.
- P.K. Srivastava, S.K. Agrawal, Winter and summer performance
of single sloped basin type SS integrated with extended
porous fins, Desalination, 319 (2013) 73–78.