References

  1. A.E. Kabeel, E.M.S. El-Said, Technological aspects of advancement in low capacity solar thermal desalination units, Int. J. Sustain. Energy, 32(5) (2013) 315–332.
  2. A.E. Kabeel, E.M. S. El-Said, Development strategies and solar thermal energy utilization for water desalination systems in remote regions: a review, Desal. Water Treat., 52(22–24) (2014) 4053–4070.
  3. A.E. Kabeel, Z.M. Omara, F.A. Essa, A.S. Abdullah, Solar still with condenser – A detailed review, Renew. Sustain. Energy Rev., 59 (2016) 839–857.
  4. D.D.W. Rufuss, S. Iniyan, L. Suganthi, P.A. Davies, Solar stills: A comprehensive review of designs, performance and material advances, Renew. Sustain. Energy Rev., 63 (2016) 464–496.
  5. S.W. Sharshir, N. Yang, G. Peng, A.E. Kabeel, Factors affecting solar stills productivity and improvement techniques: a detailed review, Appl. Thermal Eng., 100 (2016) 267–284.
  6. H. Panchal, I. Mohan, Various methods applied to solar still for augmentation of distillate output, Desalination, 415 (2017) 76–89.
  7. M. Edalatpour, K. Aryana, A. Kianifar, G.N. Tiwari, O. Mahian, S. Wongwises, Solar stills: A review of the latest developments in numerical simulations, Solar Energy, 135 (2016) 897–922.
  8. C. Elango, N. Gunasekaran, K. Sampathkumar, Thermal models of solar still—A comprehensive review, Renew. Sustain. Energy Rev., 47 (2015) 856–911.
  9. S.W. Sharshir, A.H. Elsheikh, G. Peng, N. Yang, M.O.A. El-Samadony, A.E. Kabeel, Thermal performance and exergy analysis of solar stills – A review, Renew. Sustain. Energy Rev., 73 (2017) 521–544.
  10. P.T. Tsilingiris, Analysis of the heat and mass transfer processes in solar stills – The validation of a model, Solar Energy, 83 (2009) 420–431.
  11. S.V. Patankar, Numerical Heat Transfer and Fluid Flow. Hemisphere, New York, 1980.
  12. R.H. Pletcher, J.C. Tannehill, D. Anderson, Computational Fluid Mechanics and Heat Transfer, 3rd ed. (Series in Computational and Physical Processes in Mechanics and Thermal Sciences), CRC press, 2013.
  13. H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: The finite volume method, Longman Scientific & Technical, 1995.
  14. J.R. Grace, F. Taghipour, Verification and validation of CFD models and dynamic similarity for fluidized beds, Powder Technol., 139 (2004) 99–110.
  15. W.H. McAdams, Heat Transmission, 3rd ed. McGraw-Hill, 1958.
  16. R.V. Dunkle, Solar water distillation: the roof type still and a multiple impact diffusion still. In: ASME Proc. Int. Heat Transfer Conf. Part V, Int. Develop. Heat Transfer, University of Colorado, Boulder Colorado, 1961.
  17. A.T. Shawaqfeh, M.M. Farid, New development in the theory of heat and mass transfer in solar stills, Sol. Energy, 55 (1995) 527–535.
  18. J. Rheinlander, Numerical calculation of heat and mass transfer in solar stills, Solar Energy, 28(2) (1982) 173–179.
  19. P.I. Cooper, Heat and mass transfer within a single impact solar still envelope. Introduced at the First Australian Conference on Heat and Mass Transfer, Melbourne, 1973.
  20. S. Kumar, G.N. Tiwari, Estimation of convective mass transfer in solar distillation systems, Solar Energy, 57(6) (1996) 459–464.
  21. M.A.S. Malik, G.N. Tiwari, A. Kumar, M.S. Sodha, Solar Distillation. Pergamon Press, 1982, Oxford, NY.
  22. R. Tripathi, G.N. Tiwari, Effect of water depth on internal heat and mass transfer for active solar distillation, Desalination, 173 (2005) 187–200.
  23. R. Tripathy, G.N. Tiwari, Performance evaluation of a solar still by using the concept of solar fractionation, Desalination, 169 (2004) 69–80.
  24. R. Tripathy, G.N. Tiwari, Thermal modelling of passive and active solar stills for different depths of water by using the concept of solar fraction, Solar Energy, 80 (2006) 956–967.
  25. A.K. Tiwari, G.N. Tiwari, Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition, Desalination, 195 (2006) 78–94.
  26. N.H. Mostafa, B. Djebedjian, E.M.S. El-Said, M. Abou Rayan, Experimental and numerical study of spoiler impact on ship stability: effect of spoiler inclination angle, CFD Lett., 1(1) (2009) 29–42.
  27. C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of natural boundaries, J. Comput. Phys., 39 (1981) 201–225.
  28. W.J. Rider, D.B. Kothe, S.J. Mosso, J.H. Cerrutti, J.I. Hochstein, Accurate solution algorithms for incompressible multiphase fluid flows, AIAA Paper 95-0699, 1995.
  29. W.F. Noh, P.R. Woodward, SLIC (Simple Line Interface Method), in A.I. van de Vooren and P.J. Zandbergen, (Editors), Lecture Notes in Physics, 59 (1976) 330–340.
  30. D.B. Kothe, W.J. Rider, S.J. Mosso, J.S. Brock, Volume tracking of interfaces having surface tension in two and three dimensions, AIAA Paper 96-0859, 1996.
  31. J. Rheinlander, Numerical calculation of heat and mass transfer in solar stills, Sol. Energy, 28 (1982) 173–179.
  32. P.I. Cooper, Heat and mass transfer within a single-impact solar still envelope-I. Austral. Conf. on Heat and Mass Transfer, Melbourne, 1973.
  33. B. Djebedjian, M. Abou Rayan, Theoretical investigation on the performance prediction of solar still, Desalination, 128 (2000) 139–145.
  34. N. Rahbar, J.A. Esfahani, Estimation of convective heat transfer coefficient in a single-slope solar still: a numerical study, Desal. Water Treat., 50 (2012) 387–396.
  35. N. Rahbar, J.A. Esfahani, Productivity estimation of a single-slope solar still: Theoretical and numerical analysis, Energy, 49 (2013) 289–297.
  36. R.A. Juárez, G. Álvarez, J. Xamán, I.H. López, Numerical study of conjugate heat and mass transfer in a solar still device, Desalination, 325 (2013) 84 –94.
  37. C. Béghein, F. Haghighat, F. Allard, Numerical study of double- diffusive natural convection in a square cavity, Int. J. Heat Mass Trans., 35 (1992) 833–846.
  38. I. Sezai, A.A. Mohamad, Double diffusive convection in a cubic enclosure with opposing temperature and concentration gradients, Phys. Fluids, 12 (2000) 2210–2223.
  39. S. Rashidi, M. Bovand, J.A. Esfahani, Optimization of partitioning inside a single slope solar still for performance improvement, Desalination, 395 (2016) 79–91.
  40. S. Rashidi, J.A. Esfahani, N. Rahbar, Partitioning of solar still for performance recovery: Experimental and numerical investigations with cost analysis, Solar Energy, 153 (2017) 41–50.
  41. S. Rashidi, J.A. Esfahani, Spatial entropy generation analysis for the design improvement of a single slope solar still, Environ. Progress Sustain. Energy, (2017) 1– 9.
  42. A. Palacio, J.L. Fernandez, Numerical analysis of greenhouse-type solar stills with high inclination, Solar Energy, 50(6) (1993) 469–476.
  43. Y.A. Abakr, A.F. Ismail, Theoretical and experimental investigation of a novel multistage evacuated solar still, J. Solar Energy Eng., 2005 (127) 381–385.
  44. N. Setoodeh, R. Rahimi, A. Ameri, Modeling and determination of heat transfer coefficient in a basin solar still using CFD, Desalination, 268 (2011) 103–110.
  45. H.N. Panchal, P.K. Shah, Modelling and verification of single slope solar still using ANSYS-CFX, Int. J. Energy Environ., 2(6) (2011) 985–998.
  46. H.N. Panchal, P.K. Shah, Experimental and ANSYS CFD simulation analysis of hemispherical solar still, Int. J. Renew. Energy, 8(1) (2013) 1–14.
  47. J.D. LeFevre, Modeling of complex pentahedron solar still covers to optimize distillate, Master thesis, Brigham Young University, USA, 2012.
  48. J. LeFevre, W.J. Bowman, M.R. Jones, Numerical simulation of convection in triangular cavities to predict SS performance, J. Thermophys. Heat Trans., 27(3) (2013) 482–488.
  49. A.R. Badusha, T.V. Arjunan, Performance analysis of single slope solar still, Int. J. Mech. Eng. Rob. Res., (2013) 74–81.
  50. N. Gokilavani, D. Prabhakaran, T. Kannadasan, Experimental studies and CFD modeling on solar distillation system, Int. J. Innov. Res. Sci. Eng. Technol., 3(9) (2014) 15818–15822.
  51. M. Shakaib, M.A. Khan, Modeling of fluid flow and temperature profiles in SSs using CFD, Proceedings of 2015 International Conference on Chemical, Metallurgy and Environmental Engineering (ICMAEE-15), Istanbul (Turkey), (2015) 272–276.
  52. A. Kumar, CFD modeling and validation of a single slope solar still, M.Sc. thesis, Malaviya National Institute of Technology, India, 2015.
  53. N. Rahbar, J.A. Esfahani, E.F. Bafghi, Estimation of convective heat transfer coefficient and water-productivity in a tubular solar still – CFD simulation and theoretical analysis, Solar Energy, 113 (2015) 313–323.
  54. E.F. Baggy, N. Rahbar, J.A. Esfahani, Productivity improvement of a tubular solar still, using CFD simulation, J. Model. Eng., 10 (2013) 37–48.
  55. C.U. Maheswari, B.V. Reddy, A.N. Sree, A.V. Reddy, A.S.P. Reddy, C.R.R. Prasad, B.H.K. Varma, CFD analysis of single basin double slope solar still, Invent. J. Res. Technol. Eng. Manage. (IJRTEM), 1(2) (2016) 01–05.
  56. Y. Taamneh, Influence of Jordanian zeolite on the performance of a solar still: experiments and CFD simulation studies, Water Sci. Technol.: Water Supply, 16(6) (2016) 1700–1709.
  57. O. Bait, M.S. Ameur, Numerical investigation of a multi-stage solar still under Batna climatic conditions: Impact of radiation term on mass and heat energy balances, Energy, 98 (2016) 308–323.
  58. P. Malaiyappan, N. Elumalai, Numerical investigations: basin materials of a single-basin and single-slope solar still, Desal. Water Treat., 57(45) (2016) 21211–21233.
  59. J. Arya, B. Sreenath, Performance study of a solar still using ANSYS, Int. J. Scient. Res. Devel., 4(4) (2016) 1397–1399.
  60. H.N. Panchal, N. Patel, ANSYS CFD and experimental comparison of various parameters of solar still, Int. J. Ambient Energy, (2017) 1–7.
  61. V.R. Khare, A.P. Singh, H. Kumar, R. Khatri, Modelling and performance augmentation of single slope solar still using CFD, Energy Procedia., 109 (2017) 447–455.
  62. S. Rashidi, S. Akara, M. Bovand, R. Ellahi, Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still, Renew. Energy, 115 (2018) 400–410.
  63. Fluent, Ansys. “Ansys Fluent Theory Guide.” ANSYS Inc., USA, 2011.
  64. D.C. Wilcox, Turbulence Modeling for CFD, 2nd ed., 1998.
  65. M.S. Houssain, W. Rodi, Equations for turbulent buoyant flows and their modelling. Rep. SFB 80/T/46, Univ. Karlsruhe.
  66. P.J. Roache, Verification and validation in computational science and engineering, Hermosa Publishers, Albuquerque, NM, 1998.
  67. S. Rashidi, J.A. Esfahani, N. Rahbar, Enhancement of solar still by reticular porous media: Experimental investigation with exergy and economic analysis, Applied Thermal Engineering, in press, 2017.
  68. J.A. Clark, The steady-state performance of a solar still, J. Solar Energy, 44(1) (1990) 43.
  69. S. Kumar, G.N. Tiwari, H.N. Singh, Estimation of convective mass transfer in solar distillation system, Solar Energy, 57(6) (1996) 459.
  70. A. Shruti, Computer Based Thermal Modeling of an Advanced Solar Distillation System: An Experimental Study. Diss. IIT Delhi, New Delhi, 1999.
  71. K. Islam, T. Fukuhara, Production analysis of a tubular solar still, Doboku Gakkai Ronbunshuu B, 63 (2007) 108–119.
  72. K.S. Reddy, K.R. Kumar, T.S. O’Donovan, T.K. Mallick, Performance analysis of an evacuated multiestage solar water desalination system, Desalination, 288 (2012) 80–92.
  73. M.I.M. Shatat, K. Mahkamov, Determination of rational design parameters of a multiestage solar water desalination still using transient mathematical modelling, Renew Energy, 35 (2010) 52–61.
  74. A.E. Bergles, Recent developments in enhanced heat transfer, Heat Mass Trans., 47 (2011) 1001–1008.
  75. M.H. Hamed, A.E. Kabeel, E.M.S. El-Said, Enhancement of heat and mass transfer performance on humidification tower using injection of different carrier gases into water bed, Appl. Thermal Eng., 111 (2017) 455–476.
  76. A.W. Ezzat, N.N. Abdullah, S.L. Ghashim, Effect of air bubbles on heat transfer coefficient in turbulent convection flow, J. Eng., 23(1) (2017) 8–28.
  77. E.M.S. El-Said, M. Abdulaziz, Thermo-electric solar-based freshwater generator for drinking needs in dry regions: A numerical study, ARWADEX11, 11th Water Desalination Conference in Arab Countries, Cairo, Egypt, 2017.
  78. D.D Ganji, A. Malvandi, Heat Transfer Augmentation Using Nanofluid Flow in Microchannels – Simulation of Heat and Mass Transfer, Elsevier, 2016.
  79. D. Duan, P. Ge, W. Bi, J. Ji, Numerical investigation on the heat transfer augmentation mechanism of planar elastic tube bundle by flow-induced vibration, Int. J. Thermal Sci., 112(16) (2017) 450–459.
  80. M. Talebi, M. Setareh, R.H. Abardeh, M.S. Avval, Numerical investigation of natural convection heat transfer in a cylindrical enclosure due to ultrasonic vibrations, Ultrasonics, 76 (2017) 52–62.
  81. G.P. Narayan, R.K. McGovern, J.H. Lienhard, S.M. Zubair, Helium as a carrier gas in humidification dehumidification desalination systems, Proc. ASME 2011 International Mechanical Engineering Congress & Exposition, Denver, Colorado, USA, IMECE2011-62875.
  82. S.A. El-Agouza, M. Abugderah, Experimental analysis of humidification process by air passing through seawater, Energy Convers. Manage., 49 (2008) 3698–3703.
  83. M.K. Abu Arabi, K.V. Reddy, Performance evaluation of desalination processes in view of the humidification/dehumidification cycle with different carrier gases, Desalination, 156 (2003) 281–293.
  84. H.M. Abd-ur-Rehman, F.A. Al-Sulaiman Mathematical Modeling of Bubbler Humidifier for Humidification-Dehumidification (HDH) Water Desalination System, Proceedings of the 1st International Conference on Mechanical and Transportation Engineering, Kuala Lumpur, Malaysia, 2015.
  85. A. Khalil, S.A. El-Agouz, Y.A.F. El-Samadony, Ahmed Abdo, Solar water desalination using an air bubble column humidifier, Desalination, 372 (2015) 7–16.
  86. W. Yuanxin, B. Chen One, M.H. Al-Dahhan, Predictions of radial gas hold up profiles in bubble column reactors, Chem. Eng. Sci., 56 (2001) 1207–1210.
  87. B. Moshtari, E.G. Babakhani, J.S. Moghaddas, Experimental study of gas hold-up and bubble behavior in gas-liquid bubble column, Petrol. Coal, 51(1) (2009) 22–28.
  88. K.M.S. Eldalil, Improving the performance of SS using vibratory harmonic effect, Desalination, 251 (2010) 3–11.
  89. K.M.S. Eldalil, New concept for improving SS performance by using vibratory harmonic effect theoretical analysis, Part-2, Thirteenth International Water Technology Conference, IWTC 13 2009, Hurghada, Egypt.
  90. P.K. Srivastava, S.K. Agrawal, Winter and summer performance of single sloped basin type SS integrated with extended porous fins, Desalination, 319 (2013) 73–78.