References
- E. Dopico, A.R. Linde, E. Garcia-Vazquez, Traditional and modern
practices of soil fertilization: Effects on cadmium pollution
of river ecosystems in Spain, Hum. Ecol., 37(2) (2009) 235–240.
- P.F.A.M. Römkens, H.Y. Guo, C.L. Chu, T.S. Liu, C.F. Chiang,
G.F. Koopmans, Prediction of Cadmium uptake by brown
rice and derivation of soil-plant transfer models to improve
soil protection guidelines, Environ. Pollut., 157(8) (2009)
2435–2444.
- F.S. Higashikawa, R.F. Conz, M. Colzato, C.E.P. Cerri, L.R.F.
Alleoni, Effects of feedstock type and slow pyrolysis temperature
in the production of biochars on the removal of cadmium
and nickel from water, J. Clean. Prod., 137 (2016) 965–972.
- M.M. Matlock, B.S. Howerton, K.R. Henke, et al. A pyridine-thiol ligand with multiple bonding sites for heavy metal
precipitation, J. Hazard. Mater., 82(1) (2001) 55–63.
- I.H. Lee, Y.C. Kuan, J.M. Chern, Factorial experimental design
for recovering heavy metals from sludge with ion-exchange
resin, J. Hazard. Mater., 138(3) (2006) 549–559.
- T. Mwamulima, X. Zhang, Y. Wang, S. Song, C. Peng, Novel
approach to control adsorbent aggregation: iron fixed bentonite-fly ash for lead (Pb) and cadmium (Cd) removal from aqueous
media, Front. Environ. Sci. Eng., 12(2) (2018) 2.
- Z. Feng, L. Zhu, Sorption of phenanthrene to biochar modified
by base, Front. Environ. Sci. Eng., 12(2) (2018) 1.
- J. Su, C. Xie, C. Chen, Y. Yu, G. Kennedy, G.A. Somorjai, P. Yang,
Insights into the mechanism of tandem alkene hydroformylation
over a nanostructured catalyst with multiple interfaces, J.
Am. Chem. Soc., 138(36) (2016) 11568.
- Z. Guo, J. Fan, J. Zhang, Y. Kang, H. Liu, L. Jiang, C. Zhang,
Sorption heavy metal ions by activated carbons with well-developed
microporosity and amino groups derived from Phragmites
australis by ammonium phosphates activation, J. Taiwan
Inst. Chem. Eng., 58 (2016) 290–296.
- Z. Guo, J. Zhang, H. Liu, Y. Kang, Development of a nitrogen-functionalized carbon adsorbent derived from biomass
waste by diammonium hydrogen phosphate activation for
Cr(VI) removal, Powder Technol., 318 (2017) 459–464.
- Z. Guo, X. Bian, J. Zhang, H. Liu, C. Cheng, C. Zhang, J. Wang,
Activated carbons with well-developed microporosity prepared
from Phragmites australis by potassium silicate activation,
J. Taiwan Inst. Chem. Eng., 45(5) (2014) 2801–2804.
- Z. Guo, A. Zhang, J. Zhang, H. Liu, Y. Kang, C. Zhang, Anammoniation-activation method to prepare activated carbon with
enhanced porosity and functionality, Powder Technol., 309
(2017) 74–78.
- Z. Guo, X. Zhang, Y. Kang, J. Zhang, Biomass-derived carbon
sorbents for Cd(II) removal: activation and adsorption mechanism,
ACS Sustain. Chem. Eng., 5(5) (2017).
- H. Liu, P. Dai, J. Zhang, C. Zhang, N. Bao, C. Cheng, L. Ren,
Preparation and evaluation of activated carbons from lotus
stalk with trimethyl phosphate and tributyl phosphate activation
for lead removal, Chem. Eng. J., 228(28) (2013) 425–434.
- V. Muthukumar, N. Rajesh, R. Venkatasamy, A. Sureshbabu,
N. Senthilkumar, Mathematical modeling for radial overcut
on electrical discharge machining of Incoloy 800 by response
surface methodology, Procedia Mater. Sci., 6 (2014) 1674–1682.
- D. Ozturk, T. Sahan, T. Bayram, A. Erkus, Application of
response surface methodology (RSM) to optimize the adsorption
conditions of cationic basic yellow 2 onto pumice samples
as a new adsorbent, Fresen. Environ. Bull, 26 (2017) 3285–3292.
- G. Wang, Y. Wang, Optimization of additives of intumescent
fire resistant coating for steel structure by response surface
methodology, HuagongXuebao/CIESC J. (2012).
- M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira,
Response surface methodology (RSM) as a tool for optimization
in analytical chemistry, Talanta, 76(5) (2008) 965–977.
- A.H. Basta, V. Fierro, H. El-Saied, A. Celzard, 2-Steps KOH
activation of rice straw: An efficient method for preparing
high-performance activated carbons, Bioresour. Technol.,
100(17) (2009) 3941–3947.
- J. Landers, G.Y. Gor, A.V. Neimark, Density functional theory
methods for characterization of porous materials, Colloids
Surfaces A Physicochem. Eng. Asp., 437(6) (2013) 3–32.
- H.P. Boehm, Chemical Identification of Surface Groups, Adv.
Catal., 16 (1996) 179–274.
- T. Chmiel, M. Kupska, W. Wardencki, J. Namieśnik, Application
of response surface methodology to optimize solid-phase
microextraction procedure for chromatographic determination
of aroma-active monoterpenes in berries, Food Chem., 221
(2017) 1041–1056.
- Y. Liu, F. Liu, L. Ni, M. Meng, X. Meng, G. Zhong, J. Qiu, A
modeling study by response surface methodology (RSM) on
Sr(II) ion dynamic adsorption optimization using a novel
magnetic ion imprinted polymer, RSC Adv., 6(60) (2016)
54679–54692.
- F. Nasiri Azad, M. Ghaedi, K. Dashtian, A. Jamshidi, G. Hassani,
M. Montazerozohori, S. Hajati, M. Rajabi, A.A. Bazrafshan,
Preparation and characterization of an AC-Fe3O4-Au
hybrid for the simultaneous removal of Cd2+, Pb2+, Cr3+ and
Ni2+ ions from aqueous solution via complexation with
2-((2,4-dichloro-benzylidene)-amino)-benzenethiol: Taguchi
optimization, RSC Adv., 6(24) (2016) 19780–19791.
- A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec,
K. Pokomeda, Application of response surface methodology
and artificial neural network methods in modelling and optimization
of biosorption process, Bioresour. Technol., 160(5)
(2014) 150–160.
- L. Lu, Z. Yang, P. Sun, J. Huang, Optimization of the biosorption
of Pb2+ by citron peel using response surface methodology,
Acta Scientiae Circumstantiae (2009).
- M. Dastkhoon, M. Ghaedi, A. Asfaram, A. Goudarzi, S.M.
Mohammadi, S. Wang, Improved adsorption performance of
nanostructured composite by ultrasonic wave: Optimization
through response surface methodology, isotherm and kinetic
studies, Ultrason. Sonochem., 37 (2016) 94.
- B. Kiran, A. Kaushik, C.P. Kaushik, Response surface methodological
approach for optimizing removal of Cr (VI) from
aqueous solution using immobilized cyanobacterium, Chem.
Eng. J., 126(2) (2007) 147–153.
- M.K. Aroua, S.P.P. Leong, L.Y. Teo, C.Y. Yin, W.M.A.W.
Daud, Real-time determination of kinetics of adsorption
of lead(II) onto palm shell-based activated carbon using
ion selective electrode, Bioresour. Technol., 99(13) (2008)
5786–5792.
- I. Langmuir, The adsorption of gases on plane surfaces of
glass, mica and platinum, J. Am. Chem. Soc. (1918).
- G. Crini, H.N. Peindy, F. Gimbert, C. Robert, Removal of
C.I. Basic Green 4 (Malachite Green) from aqueous solutions
by adsorption using cyclodextrin-based adsorbent:
Kinetic and equilibrium studies, Sep. Purif. Technol., 53(1)
(2007) 97–110.
- P. Chingombe, B. Saha, R.J. Wakeman, Sorption of atrazine on
conventional and surface modified activated carbons, J. Colloid
Interface Sci., 302(2) (2006) 408–416.
- H. Liu, Q. Gao, P. Dai, J. Zhang, C. Zhang, N. Bao, Preparation
and characterization of activated carbon from lotus stalk with
guanidine phosphate activation: Sorption of Cd(II), J. Anal.
Appl. Pyrolysis, 102(102) (2013) 7–15.
- H. Liu, S. Liang, J. Gao, H.H. Ngo, W. Guo, Z. Guo, Y. Li, Development
of biochars from pyrolysis of lotus stalks for Ni(II)
sorption: Using zinc borate as flame retardant, J. Anal. Appl.
Pyrolysis, 107(9) (2014) 336–341.
- Z. Guo, J. Zhang, H. Liu, Y. Kang, J. Yu, C. Zhang, Optimization
of the green and low-cost ammoniation-activation
method to produce biomass-based activated carbon for
Ni(II) removal from aqueous solutions, J. Clean. Prod., 159
(2017) 38–46.
- P. Yuan, M. Fan, D. Yang, H. He, D. Liu, A. Yuan, J.X. Zhu, T.H.
Chen, Montmorillonite-supported magnetite nanoparticles for
the removal of hexavalent chromium [Cr(VI)] from aqueous
solutions, J. Hazard. Mater., 166 (2009) 821–829.
- Z. Ma, H. Ming, H. Huang, Y. Liu, Z. Kang, One-step ultrasonic
synthesis of fluorescent N-doped carbon dots from glucose
and their visible-light sensitive photocatalytic ability,
New J. Chem., 36(4) (2012) 861–864.
- J.L. Figueiredo, M.F.R. Pereira, The role of surface chemistry in
catalysis with carbons, Catal. Today, 150 (2010) 2–7.
- S. Yang, T. Xiao, J. Zhang, Y. Chen, L. Li, Activated carbon fiber
as heterogeneous catalyst of peroxymonosulfate activation for
efficient degradation of Acid Orange 7 in aqueous solution,
Sep. Purif. Technol., 143 (2015) 19–26.
- S. Biniak, G. Szymański, J. Siedlewski, A. Światkoski, The characterization
of activated carbons with oxygen and nitrogen
surface groups, Carbon, 35 (1997) 1799–1810.
- K.J.H. and W.P.H. U. ZIELKE, U. Zielke, K.J. Hüttinger, W.P.
Hoffman, Surface-oxidized carbon fibers: I. Surface structure
and chemistry, Carbon, 34 (1996) 983–998.
- M.J. Puchana-Rosero, M.A. Adebayo, E.C. Lima, F.M. Machado,
P.S. Thue, J.C.P. Vaghetti, C.S. Umpierres, M. Gutterres, Microwave-assisted activated carbon obtained from the sludge of
tannery-treatment effluent plant for removal of leather dyes,
Colloids Surfaces A Physicochem. Eng. Asp., 504 (2016) 105–115.
- W. Yin, C. Zhao, J. Xu, J. Zhang, Z. Guo, Y. Shao, Removal of
Cd(II) and Ni(II) from aqueous solutions using activated carbon
developed from powder-hydrolyzed-feathers and Trapanatans
husks, Colloids Surfaces A Physicochem. Eng. Asp., 560
(2019) 426–433.
- Z. Guo, X. Zhang, Y. Kang, J. Zhang, Biomass-derived carbon
sorbents for Cd(II) removal: Activation and adsorption mechanism,
ACS Sustain. Chem. Eng., 5(5) (2017) 4103–4109.
- H. Liu, P. Dai, J. Zhang, C. Zhang, N. Bao, C. Cheng, L. Ren,
Preparation and evaluation of activated carbons from lotus
stalk with trimethyl phosphate and tributyl phosphate activation
for lead removal, Chem. Eng. J., 5(5) (2017) 4103–4109.