References

  1. E. Dopico, A.R. Linde, E. Garcia-Vazquez, Traditional and modern practices of soil fertilization: Effects on cadmium pollution of river ecosystems in Spain, Hum. Ecol., 37(2) (2009) 235–240.
  2. P.F.A.M. Römkens, H.Y. Guo, C.L. Chu, T.S. Liu, C.F. Chiang, G.F. Koopmans, Prediction of Cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines, Environ. Pollut., 157(8) (2009) 2435–2444.
  3. F.S. Higashikawa, R.F. Conz, M. Colzato, C.E.P. Cerri, L.R.F. Alleoni, Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water, J. Clean. Prod., 137 (2016) 965–972.
  4. M.M. Matlock, B.S. Howerton, K.R. Henke, et al. A pyridine-thiol ligand with multiple bonding sites for heavy metal precipitation, J. Hazard. Mater., 82(1) (2001) 55–63.
  5. I.H. Lee, Y.C. Kuan, J.M. Chern, Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin, J. Hazard. Mater., 138(3) (2006) 549–559.
  6. T. Mwamulima, X. Zhang, Y. Wang, S. Song, C. Peng, Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for lead (Pb) and cadmium (Cd) removal from aqueous media, Front. Environ. Sci. Eng., 12(2) (2018) 2.
  7. Z. Feng, L. Zhu, Sorption of phenanthrene to biochar modified by base, Front. Environ. Sci. Eng., 12(2) (2018) 1.
  8. J. Su, C. Xie, C. Chen, Y. Yu, G. Kennedy, G.A. Somorjai, P. Yang, Insights into the mechanism of tandem alkene hydroformylation over a nanostructured catalyst with multiple interfaces, J. Am. Chem. Soc., 138(36) (2016) 11568.
  9. Z. Guo, J. Fan, J. Zhang, Y. Kang, H. Liu, L. Jiang, C. Zhang, Sorption heavy metal ions by activated carbons with well-developed microporosity and amino groups derived from Phragmites australis by ammonium phosphates activation, J. Taiwan Inst. Chem. Eng., 58 (2016) 290–296.
  10. Z. Guo, J. Zhang, H. Liu, Y. Kang, Development of a nitrogen-functionalized carbon adsorbent derived from biomass waste by diammonium hydrogen phosphate activation for Cr(VI) removal, Powder Technol., 318 (2017) 459–464.
  11. Z. Guo, X. Bian, J. Zhang, H. Liu, C. Cheng, C. Zhang, J. Wang, Activated carbons with well-developed microporosity prepared from Phragmites australis by potassium silicate activation, J. Taiwan Inst. Chem. Eng., 45(5) (2014) 2801–2804.
  12. Z. Guo, A. Zhang, J. Zhang, H. Liu, Y. Kang, C. Zhang, Anammoniation-activation method to prepare activated carbon with enhanced porosity and functionality, Powder Technol., 309 (2017) 74–78.
  13. Z. Guo, X. Zhang, Y. Kang, J. Zhang, Biomass-derived carbon sorbents for Cd(II) removal: activation and adsorption mechanism, ACS Sustain. Chem. Eng., 5(5) (2017).
  14. H. Liu, P. Dai, J. Zhang, C. Zhang, N. Bao, C. Cheng, L. Ren, Preparation and evaluation of activated carbons from lotus stalk with trimethyl phosphate and tributyl phosphate activation for lead removal, Chem. Eng. J., 228(28) (2013) 425–434.
  15. V. Muthukumar, N. Rajesh, R. Venkatasamy, A. Sureshbabu, N. Senthilkumar, Mathematical modeling for radial overcut on electrical discharge machining of Incoloy 800 by response surface methodology, Procedia Mater. Sci., 6 (2014) 1674–1682.
  16. D. Ozturk, T. Sahan, T. Bayram, A. Erkus, Application of response surface methodology (RSM) to optimize the adsorption conditions of cationic basic yellow 2 onto pumice samples as a new adsorbent, Fresen. Environ. Bull, 26 (2017) 3285–3292.
  17. G. Wang, Y. Wang, Optimization of additives of intumescent fire resistant coating for steel structure by response surface methodology, HuagongXuebao/CIESC J. (2012).
  18. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76(5) (2008) 965–977.
  19. A.H. Basta, V. Fierro, H. El-Saied, A. Celzard, 2-Steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons, Bioresour. Technol., 100(17) (2009) 3941–3947.
  20. J. Landers, G.Y. Gor, A.V. Neimark, Density functional theory methods for characterization of porous materials, Colloids Surfaces A Physicochem. Eng. Asp., 437(6) (2013) 3–32.
  21. H.P. Boehm, Chemical Identification of Surface Groups, Adv. Catal., 16 (1996) 179–274.
  22. T. Chmiel, M. Kupska, W. Wardencki, J. Namieśnik, Application of response surface methodology to optimize solid-phase microextraction procedure for chromatographic determination of aroma-active monoterpenes in berries, Food Chem., 221 (2017) 1041–1056.
  23. Y. Liu, F. Liu, L. Ni, M. Meng, X. Meng, G. Zhong, J. Qiu, A modeling study by response surface methodology (RSM) on Sr(II) ion dynamic adsorption optimization using a novel magnetic ion imprinted polymer, RSC Adv., 6(60) (2016) 54679–54692.
  24. F. Nasiri Azad, M. Ghaedi, K. Dashtian, A. Jamshidi, G. Hassani, M. Montazerozohori, S. Hajati, M. Rajabi, A.A. Bazrafshan, Preparation and characterization of an AC-Fe3O4-Au hybrid for the simultaneous removal of Cd2+, Pb2+, Cr3+ and Ni2+ ions from aqueous solution via complexation with 2-((2,4-dichloro-benzylidene)-amino)-benzenethiol: Taguchi optimization, RSC Adv., 6(24) (2016) 19780–19791.
  25. A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec, K. Pokomeda, Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process, Bioresour. Technol., 160(5) (2014) 150–160.
  26. L. Lu, Z. Yang, P. Sun, J. Huang, Optimization of the biosorption of Pb2+ by citron peel using response surface methodology, Acta Scientiae Circumstantiae (2009).
  27. M. Dastkhoon, M. Ghaedi, A. Asfaram, A. Goudarzi, S.M. Mohammadi, S. Wang, Improved adsorption performance of nanostructured composite by ultrasonic wave: Optimization through response surface methodology, isotherm and kinetic studies, Ultrason. Sonochem., 37 (2016) 94.
  28. B. Kiran, A. Kaushik, C.P. Kaushik, Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium, Chem. Eng. J., 126(2) (2007) 147–153.
  29. M.K. Aroua, S.P.P. Leong, L.Y. Teo, C.Y. Yin, W.M.A.W. Daud, Real-time determination of kinetics of adsorption of lead(II) onto palm shell-based activated carbon using ion selective electrode, Bioresour. Technol., 99(13) (2008) 5786–5792.
  30. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. (1918).
  31. G. Crini, H.N. Peindy, F. Gimbert, C. Robert, Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies, Sep. Purif. Technol., 53(1) (2007) 97–110.
  32. P. Chingombe, B. Saha, R.J. Wakeman, Sorption of atrazine on conventional and surface modified activated carbons, J. Colloid Interface Sci., 302(2) (2006) 408–416.
  33. H. Liu, Q. Gao, P. Dai, J. Zhang, C. Zhang, N. Bao, Preparation and characterization of activated carbon from lotus stalk with guanidine phosphate activation: Sorption of Cd(II), J. Anal. Appl. Pyrolysis, 102(102) (2013) 7–15.
  34. H. Liu, S. Liang, J. Gao, H.H. Ngo, W. Guo, Z. Guo, Y. Li, Development of biochars from pyrolysis of lotus stalks for Ni(II) sorption: Using zinc borate as flame retardant, J. Anal. Appl. Pyrolysis, 107(9) (2014) 336–341.
  35. Z. Guo, J. Zhang, H. Liu, Y. Kang, J. Yu, C. Zhang, Optimization of the green and low-cost ammoniation-activation method to produce biomass-based activated carbon for Ni(II) removal from aqueous solutions, J. Clean. Prod., 159 (2017) 38–46.
  36. P. Yuan, M. Fan, D. Yang, H. He, D. Liu, A. Yuan, J.X. Zhu, T.H. Chen, Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions, J. Hazard. Mater., 166 (2009) 821–829.
  37. Z. Ma, H. Ming, H. Huang, Y. Liu, Z. Kang, One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability, New J. Chem., 36(4) (2012) 861–864.
  38. J.L. Figueiredo, M.F.R. Pereira, The role of surface chemistry in catalysis with carbons, Catal. Today, 150 (2010) 2–7.
  39. S. Yang, T. Xiao, J. Zhang, Y. Chen, L. Li, Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid Orange 7 in aqueous solution, Sep. Purif. Technol., 143 (2015) 19–26.
  40. S. Biniak, G. Szymański, J. Siedlewski, A. Światkoski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon, 35 (1997) 1799–1810.
  41. K.J.H. and W.P.H. U. ZIELKE, U. Zielke, K.J. Hüttinger, W.P. Hoffman, Surface-oxidized carbon fibers: I. Surface structure and chemistry, Carbon, 34 (1996) 983–998.
  42. M.J. Puchana-Rosero, M.A. Adebayo, E.C. Lima, F.M. Machado, P.S. Thue, J.C.P. Vaghetti, C.S. Umpierres, M. Gutterres, Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes, Colloids Surfaces A Physicochem. Eng. Asp., 504 (2016) 105–115.
  43. W. Yin, C. Zhao, J. Xu, J. Zhang, Z. Guo, Y. Shao, Removal of Cd(II) and Ni(II) from aqueous solutions using activated carbon developed from powder-hydrolyzed-feathers and Trapanatans husks, Colloids Surfaces A Physicochem. Eng. Asp., 560 (2019) 426–433.
  44. Z. Guo, X. Zhang, Y. Kang, J. Zhang, Biomass-derived carbon sorbents for Cd(II) removal: Activation and adsorption mechanism, ACS Sustain. Chem. Eng., 5(5) (2017) 4103–4109.
  45. H. Liu, P. Dai, J. Zhang, C. Zhang, N. Bao, C. Cheng, L. Ren, Preparation and evaluation of activated carbons from lotus stalk with trimethyl phosphate and tributyl phosphate activation for lead removal, Chem. Eng. J., 5(5) (2017) 4103–4109.