References

  1. N. Okhovat, M. Hashemi, A. Golpayegani, Photocatalytic decomposition of Metronidazolein aqueous solutions using titanium dioxide nanoparticles, J. Mater. Environ. Sci., 6 (2015) 792–799.
  2. B. Kakavandi, A. Takdastan, N. Jaafarzadeh, M. Azizi, A. Mirzaei, A. Azari, Application of Fe3O4@C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method, J. Photochem. Photobiol. A: Chem., 314 (2016) 178–188.
  3. B. Kakavandi, A. Esrafili, A. Mohseni-Bandpi, A.J. Jafari, R.R. Kalantary, Magnetic Fe3O4@C nanoparticles as adsorbents for removal of amoxicillin from aqueous solution, Water Sci. Technol., 69 (2014) 147.
  4. Y. Deng, L. Tang, G. Zeng, J. Wang, Y. Zhou, J. Wang, J. Tang, L. Wang, C. Feng, Facile fabrication of mediator-free Z-scheme photocatalyst of phosphorous-doped ultrathin graphitic carbon nitride nanosheets and bismuth vanadate composites with enhanced tetracycline degradation under visible light, J. Colloid Interface Sci., 509 (2018) 219–234.
  5. F. Yu, Y. Li, S. Han, J. Ma, Adsorptive removal of antibiotics from aqueous solution using carbon materials, Chemosphere, 153 (2016) 365–385.
  6. Y. Chen, F. Wang, L. Duan, H. Yang, J. Gao, Tetracycline adsorption onto rice husk ash, an agricultural waste: its kinetic and thermodynamic studies, J. Mol. Liq., 222 (2016) 487–494.
  7. H. Belhassen, I. Ghorbel-Abid, L. Rim, Removal of metronidazole from aqueous solution using activated carbon, Eur. J. Chem., 8 (2017) 310–313.
  8. M. Ahmadi, H.R. Motlagh, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar, S. Jorfi, Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite, J. Environ. Manage., 186 (2017) 55–63.
  9. W. Khanday, B. Hameed, Zeolite-hydroxyapatite-activated oil palm ash composite for antibiotic tetracycline adsorption, Fuel, 215 (2018) 499–505.
  10. A. Aboudalle, H. Djelal, F. Fourcade, L. Domergue, A.A. Assadi, T. Lendormi, S. Taha, A. Amrane, Metronidazole removal by means of a combined system coupling an electro-Fenton process and a conventional biological treatment: By-products monitoring and performance enhancement, J. Hazard. Mater., 359 (2018) 85–95.
  11. X. Bu, Y. Wang, J. Li, C. Zhang, Improving the visible light photocatalytic activity of TiO2 by combining sulfur doping and rectorite carrier, J. Alloys Comp., 628 (2015) 20–26.
  12. N. Jafarzadeh, H. Rezazadeh, Z. Ramezani, S. Jorfi, M. Ahmadi, H. Ghariby, G. Barzegar, Taguchi optimization approach for metronidazole removal from aqueous solutions by using graphene oxide functionalized β-cyclodextrin/Ag nanocomposite, Water Sci. Technol., 2017 (2018) 36–47.
  13. A. Takdastan, A.H. Mahvi, E.C. Lima, M. Shirmardi, A.A. Babaei, G. Goudarzi, A. Neisi, M. Heidari Farsani, M. Vosoughi, Preparation, characterization, and application of activated carbon from low-cost material for the adsorption of tetracycline antibiotic from aqueous solutions, Water Sci. Technol., 74 (2016) 2349–2363.
  14. M. Vithanage, S. Mayakaduwa, I. Herath, Y.S. Ok, D. Mohan, Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks, Chemosphere, 150 (2016) 781–789.
  15. Y.-d. Huang, Comment on “Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes”, J. Environ. Manage., (2018).
  16. H. Chen, A. Xie, S. You, A Review: Advances on Absorption of Heavy Metals in the Waste Water by Biochar, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, pp. 012160.
  17. S. Yi, B. Gao, Y. Sun, J. Wu, X. Shi, B. Wu, X. Hu, Removal of levofloxacin from aqueous solution using rice-husk and woodchip biochars, Chemosphere, 150 (2016) 694–701.
  18. S. Kizito, S. Wu, W.K. Kirui, M. Lei, Q. Lu, H. Bah, R. Dong, Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry, Sci. Total Environ., 505 (2015) 102–112.
  19. S. Dawood, T.K. Sen, C. Phan, Performance and dynamic modelling of biochar and kaolin packed bed adsorption column for aqueous phase methylene blue (MB) dye removal, Environ. Technol., (2018) 1–35.
  20. E.-B. Son, K.-M. Poo, J.-S. Chang, K.-J. Chae, Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass, Sci. Total Environ., 615 (2018) 161–168.
  21. M. Ahmed, M.A. Islam, M. Asif, B. Hameed, Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics, Bioresour. Technol., 243 (2017) 778–784.
  22. L. He, F.-f. Liu, M. Zhao, Z. Qi, X. Sun, M.Z. Afzal, X. Sun, Y. Li, J. Hao, S. Wang, Electronic-property dependent interactions between tetracycline and graphene nanomaterials in aqueous solution, J. Environ. Sci., 66 (2018) 286–294.
  23. T. Chen, L. Luo, S. Deng, G. Shi, S. Zhang, Y. Zhang, O. Deng, L. Wang, J. Zhang, L. Wei, Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure, Bioresour. Technol., 267 (2018) 431–437.
  24. S.A. Mousavi, H. Janjani, Antibiotics adsorption from aqueous solutions using carbon nanotubes: a systematic review, Toxin Rev., (2018) 1–12.
  25. L. Sun, D. Chen, S. Wan, Z. Yu, Adsorption studies of dimetridazole and metronidazole onto biochar derived from sugarcane bagasse: kinetic, equilibrium, and mechanisms, J. Polym. Environ., 26 (2018) 765–777.
  26. P. Liu, Q. Wang, C. Zheng, C. He, Sorption of sulfadiazine, norfloxacin, metronidazole, and tetracycline by granular activated carbon: kinetics, mechanisms, and isotherms, Water Air Soil Pollut., 228 (2017) 129.
  27. J. Flores-Cano, M. Sánchez-Polo, J. Messoud, I. Velo-Gala, R. Ocampo-Pérez, J. Rivera-Utrilla, Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells, J. Environ. Manage., 169 (2016) 116–125.
  28. A. Gholizadeh, M. Kermani, M. Gholami, M. Farzadkia, Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study, J. Environ. Health Sci. Eng., 11 (2013) 29.
  29. A.A. Babaei, E.C. Lima, A. Takdastan, N. Alavi, G. Goudarzi, M. Vosoughi, G. Hassani, M. Shirmardi, Removal of tetracycline antibiotic from contaminated water media by multiwalled carbon nanotubes: operational variables, kinetics, and equilibrium studies, Water Sci. Technol., 74 (2016) 1202–1216.
  30. Y. Liu, J. Kong, J. Yuan, W. Zhao, X. Zhu, C. Sun, J. Xie, Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation, Chem. Eng. J., 331 (2018) 242–254.
  31. M. Farzadkia, E. Bazrafshan, A. Esrafili, J.-K. Yang, M. Shirzad-Siboni, Photocatalytic degradation of Metronidazole with illuminated TiO2 nanoparticles, J. Environ. Health Sci. Eng., 13 (2015) 35.
  32. A. Habibi, L.S. Belaroui, A. Bengueddach, A.L. Galindo, C.I.S. Díaz, A. Peña, Adsorption of metronidazole and spiramycin by an Algerian palygorskite. Effect of modification with tin, Micropor. Mesopor. Mater., 268 (2018) 293–302.
  33. Y. Sun, B. Gao, Y. Yao, J. Fang, M. Zhang, Y. Zhou, H. Chen, L. Yang, Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties, C Chem. Eng. J., 240 (2014) 574–578.
  34. X.-R. Jing, Y.-Y. Wang, W.-J. Liu, Y.-K. Wang, H. Jiang, Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar, Chem. Eng. J., 248 (2014) 168–174.
  35. W.-J. Liu, F.-X. Zeng, H. Jiang, X.-S. Zhang, Preparation of high adsorption capacity biochars from waste biomass, Bioresour. Technol., 102 (2011) 8247–8252.
  36. P. Liu, W.-J. Liu, H. Jiang, J.-J. Chen, W.-W. Li, H.-Q. Yu, Modification of biochar derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution, Bioresour. Technol., 121 (2012) 235–240.
  37. M. Vieira, A. de Almeida Neto, M. Da Silva, C. Carneiro, A. Melo Filho, Adsorption of lead and copper ions from aqueous effluents on rice husk ash in a dynamic system, Brazil. J. Chem. Eng., 31 (2014) 519–529.
  38. D. Zhang, J. Yin, J. Zhao, H. Zhu, C. Wang, Adsorption and removal of tetracycline from water by petroleum coke-derived highly porous activated carbon, J. Environ. Chem. Eng., 3 (2015) 1504–1512.
  39. A.A. Mohammadi, A. Zarei, H. Alidadi, M. Afsharnia, M. Shams, Two-dimensional zeolitic imidazolate framework-8 for efficient removal of phosphate from water, process modeling, optimization, kinetic, and isotherm studies, Desal. Water Treat., 129 (2018) 244–254.
  40. E. Çalışkan, S. Göktürk, Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon, Separ. Sci. Technol., 45 (2010) 244–255.
  41. J. Kang, H. Liu, Y.-M. Zheng, J. Qu, J.P. Chen, Application of nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, UV–Visible spectroscopy and kinetic modeling for elucidation of adsorption chemistry in uptake of tetracycline by zeolite beta, J. Colloid Interface Sci., 354 (2011) 261–267.
  42. L. Zhang, X. Song, X. Liu, L. Yang, F. Pan, J. Lv, Studies on the removal of tetracycline by multi-walled carbon nanotubes, Chem. Eng. J., 178 (2011) 26–33.
  43. J. He, P. Ma, A. Xie, L. Gao, Z. Zhou, Y. Yan, J. Dai, C. Li, From black liquor to highly porous carbon adsorbents with tunable microstructure and excellent adsorption of tetracycline from water: performance and mechanism study, J. Taiwan Inst. Chem. Eng., 63 (2016) 295–302.
  44. E. Zong, G. Huang, X. Liu, W. Lei, S. Jiang, Z. Ma, J. Wang, P. Song, A lignin-based nano-adsorbent for superfast and highly selective removal of phosphate, J. Mater. Chem. A, 6 (2018) 9971–9983.
  45. M.M. Ali, M. Ahmed, B. Hameed, NaY zeolite from wheat (Triticum aestivum L.) straw ash used for the adsorption of tetracycline, J. Cleaner Prod., 172 (2018) 602–608.
  46. E. Yeşilova, B. Osman, A. Kara, E.T. Özer, Molecularly imprinted particle embedded composite cryogel for selective tetracycline adsorption, Separ. Purif. Technol., 200 (2018) 155–163.
  47. D. Balarak, F.K. Mostafapour, Canola residual as a biosorbent for antibiotic metronidazole removal, Pharm. Chem. J., 3 (2016) 12–17.
  48. H. Sayğılı, F. Güzel, Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste, Ecotoxicol. Environ. Safety, 131 (2016) 22–29.
  49. A. Gholizadeh, M. Kermani, M. Gholami, M. Farzadkia, K. Yaghmaeian, Removal efficiency, adsorption kinetics and isotherms of phenolic compounds from aqueous solution using rice bran ash, Asian J. Chem., 25 (2013) 3871.
  50. R.R. Kalantary, A. Azari, A. Esrafili, K. Yaghmaeian, M. Moradi, K. Sharafi, The survey of Malathion removal using magnetic graphene oxide nanocomposite as a novel adsorbent: thermodynamics, isotherms, and kinetic study, Desal. Water Treat., 57 (2016) 28460–28473.
  51. S. Ahmadi, A. Banach, F. Kord Mostafapour, D. Balarak, Study survey of cupric oxide nanoparticles in removal efficiency of ciprofloxacin antibiotic from aqueous solution: adsorption isotherm study, Desal. Water Treat., 89 (2017) 297–303.
  52. M.H. Dehghani, S. Kamalian, M. Shayeghi, M. Yousefi, Z. Heidarinejad, S. Agarwal, V.K. Gupta, High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes, Microchem. J., 145 (2019) 486–491.
  53. D. Balarak, H. Azarpira, F. Mostafapour, Adsorption isotherm studies of tetracycline antibiotics from aqueous solutions by maize stalks as a cheap biosorbent, Int. J. Pharm. Technol., 8 (2016) 16664–16675.
  54. D. Balarak, H. Azarpira, Rice husk as a Biosorbent for antibiotic metronidazole removal: Isotherm studies and model validation, Int. J. ChemTech Res., 9 (2016) 566–573.
  55. H. Azarpira, D. Balarak, Rice husk as a biosorbent for antibiotic metronidazole removal: Isotherm studies and model validation, Int. J. ChemTech Res., 9 (2016) 566–573.
  56. D. Balarak, F. Mostafapour, H. Azarpira, Adsorption isotherm studies of tetracycline antibiotics from aqueous solutions by maize stalks as a cheap biosorbent, I Int. J. Pharm. Technol., 8 (2016) 16664–16675.
  57. S. Mazloomi, M. Yousefi, H. Nourmoradi, M. Shams, Evaluation of phosphate removal from aqueous solution using metal organic framework; isotherm, kinetic and thermodynamic study, J. Environ. Health Sci. Eng., (2019) 1–10.
  58. H.N. Saleh, M.H. Dehghani, R. Nabizadeh, A.H. Mahvi, F. Hossein, M. Ghaderpoori, M. Yousefi, A. Mohammadi, Data on the acid black 1 dye adsorbtion from aqueous solutions by low-cost adsorbent-Cerastoderma lamarcki shell collected from the northern coast of Caspian Sea, Data in Brief, 17 (2018) 774–780.
  59. M.N. Sepehr, T.J. Al-Musawi, E. Ghahramani, H. Kazemian, M. Zarrabi, Adsorption performance of magnesium/aluminum layered double hydroxide nanoparticles for metronidazole from aqueous solution, Arabian J. Chem., 10 (2017) 611–623.
  60. H. Azarpira, Y. Mahdavi, O. Khaleghi, D. Balarak, Thermodynamic studies on the removal of metronidazole antibiotic by multi-walled carbon nanotubes, Der Pharmacia Lettre, 8 (2016) 107–113.
  61. D. Carrales-Alvarado, R. Ocampo-Pérez, R. Leyva-Ramos, J. Rivera-Utrilla, Removal of the antibiotic metronidazole by adsorption on various carbon materials from aqueous phase, J. Colloid Interface Sci., 436 (2014) 276–285.