References

  1. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: short review of recent developments, J. Hazard. Mater., 160 (2008) 265–288.
  2. D.N. Veeramachaneni, J.S. Palmer, R.P. Amann, Long-term effects on male reproduction of early exposure to common chemical contaminants in drinking water, Hum. Reprod., 16 (2001) 979–987.
  3. T. Al-Khalid, M. El-Naas, Aerobic biodegradation of phenols: A comprehensive review, Crit. Rev. Environ. Sci. Technol., 42 (2012) 1631–1690.
  4. G.A. Hill, C.W. Robinson, Substrate inhibition kinetics: phenol degradation by Pseudomonas putida, Biotechnol. Bioeng., 17 (1975) 1599–1615.
  5. W. Wang, H. Han, Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewate, Bioresour. Technol., 103 (2012) 95–100.
  6. M. Gao, M.H. Diao, S. Yuan, Y.K. Wang, H. Xu, X.H. Wang, Effects of phenol on physicochemical properties and treatment performances of partial nitrifying granules in sequencing batch reactors, Biotechnol. Rep., 13 (2017) 13–18.
  7. T. Phenrat, P. Teeratitayangkul, I. Prasertsung, R. Parichatprecha, P. Jitsangiam, N. Chomchalow, S. Wichai, Vetiver plantlets in aerated system degrade phenol in illegally dumped industrial wastewater by phytochemical and rhizomicrobial degradation, Environ. Sci. Pollut. Res., 24 (2017) 13235–13246.
  8. L.T. Danh, P. Truong, R. Mammucari, T. Tran, N. Foster, Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes, Int. J. Phytorem., 11 (2009) 664–691.
  9. N. Aibibu, Y. Liu, G. Zeng, X. Wang, B. Chen, H. Song, L. Xu, Cadmium accumulation in vetiveria zizanioides and its effects on growth, physiological and biochemical characters, Bioresour. Technol., 101 (2010) 6297–6303.
  10. L.T. Danh, P. Truong, R. Mammucari, N. Foster, Economic incentive for applying vetiver grass to remediate lead, copper and zinc contaminated soils, Int. J. Phytorem., 13 (2010) 47–60.
  11. P. Truong, T.T. Van, E. Pinners, Vetiver System Applications: Technical Reference Manual, in, The Vetiver Network International, San Antonio, Texas, 2007, pp. 126.
  12. S. Singh, J.S. Melo, S. Eapen, S.F. D’Souza, Potential of vetiver (Vetiveria zizanoides L. Nash) for phytoremediation of phenol, Ecotoxicol Environ. Saf., 71 (2008) 671–676.
  13. K. Das, A. Roychoudhury, Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants, Front Environ Sci., 2 (2014) 53.
  14. S.G. Ibáñez, L.G.S. Alderete, M.I. Medina, E. Agostini, Phytoremediation of phenol using Vicia sativa L. plants and its antioxidative response, Environ. Sci. Pollut. Res., 19 (2012) 1555–1562.
  15. M.A. Talano, D.C. Busso, C.E. Paisio, P.S. González, S.A. Purro, M.I. Medina, E. Agostini, Phytoremediation of 2,4-dichlorophenol using wild type and transgenic tobacco plants, Environ. Sci. Pollut. Res., 19 (2012) 2202–2211.
  16. Y. Osem, Y. Chen, D. Levinson, Y. Hadar, The effects of plant roots on microbial community structure in aerated wastewatertreatment reactors, Ecol. Eng., 29 (2007) 133–142.
  17. M.A. Kamran, J.H. Syed, S.A. Eqani, M.F. Munis, H.J. Chaudhary, Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa, Environ. Sci. Pollut. Res., 22 (2015) 9275–9283.
  18. L. Zhang, J. Zhao, N. Cui, Y. Dai, L. Kong, J. Wu, S. Cheng, Enhancing the water purification efficiency of a floating treatment wetland using a biofilm carrier, Environ. Sci. Pollut. Res., 23 (2016) 7437–7443.
  19. A. Valipour, Y.-H. Ahn, Constructed wetlands as sustainable ecotechnologies in decentralization practices: a review, Environ. Sci. Pollut. Res., 23 (2016) 180–197.
  20. E. Kurzbaum, F. Kirzhner, S. Sela, Y. Zimmels, R. Armon, Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm, Water Res., 44 (2010) 5021–5031.
  21. U. Stottmeister, A. Wiessner, P. Kuschk, U. Kappelmeyer, M. Kästner, O. Bederski, R.A. Müller, H. Moormann, Effects of plants and microorganisms in constructed wetlands for wastewater treatment, Biotechnol. Adv., 22 (2003) 93–117.
  22. M.L. Da Silva, R. Kamath, P.J. Alvarez, Effect of simulated rhizodeposition on the relative abundance of polynuclear aromatic hydrocarbon catabolic genes in a contaminated soil, Environ. Toxicol. Chem., 25 (2006) 386–391.
  23. E. Kurzbaum, Y. Zimmels, F. Kirzhner, R. Armon, Removal of phenol in a constructed wetland system and the relative contribution of plant roots, microbial activity and porous bed, Water Sci. Technol., 62 (2010) 1327–1334.
  24. H. Moormann, P. Kuschk, U. Stottmeister, The effect of rhizodeposition from helophytes on bacterial degradation of phenolic compounds, Acta Biotechnol, 22 (2002) 107–112.
  25. H. Saleem, M. Arslan, K. Rehman, R. Tahseen, M. Afzal, Phragmites australis — a helophytic grass — can establish successful partnership with phenol-degrading bacteria in a floating treatment wetland, Saudi J. Biol. Sci., In Press (2018).
  26. M. Afzal, S. Khan, S.I.M.S. Mirza, Q.M. Khan, Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of dieselcontaminated soil, Int. Biodeterior. Biodegradation, 85 (2013) 331–336.
  27. O.M. Ontañon, P.S. González, L.F. Ambrosio, C.E. Paisio, E. Agostini, Rhizoremediation of phenol and chromium by the synergistic combination of a native bacterial strain and Brassica napus hairy roots, Int. Biodeterior. Biodegrad., 88 (2014) 192–198.
  28. H. Saleem, K. Rehman, M. Arslan, M. Afzal, Enhanced degradation of phenol in floating treatment wetlands by plantbacterial synergism, Int. J. Phytorem., 20 (2018) 692–698.
  29. Y.N. Ho, J.L. Hsieh, C.C. Huang, Construction of a plantmicrobe phytoremediation system: combination of vetiver grass with a functional endophytic bacterium, Achromobacter xylosoxidans F3B, for aromatic pollutants removal, Bioresour. Technol., 145 (2013) 43–47.
  30. A. Ullah, S. Heng, M.F. Hussain Munis, S. Fahad, X. Yang, Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review, Environ. Exp. Bot., 117 (2015) 28–40.
  31. R.B. Baird, A.D. Eaton, E.W. Rice, Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Water Works Association/American Public Works Association/ Water Environment Federation, New York, 2017.
  32. A. Baxter, R. Mittler, N. Suzuki, ROS as key players in plant stress signalling, J. Exp. Bot., 65 (2014) 1229–1240.
  33. S. Singh, J.S. Melo, S. Eapen, S.F. D’Souza, Phenol removal using Brassica juncea hairy roots: role of inherent peroxidase and H2O2, J. Biotechnol., 123 (2006) 43–49.
  34. B. Chance, A.C. Maehly, Assay of catalases and peroxidases, Methods Enzymol., 2 (1955) 764–775.
  35. R.G. Alscher, N. Erturk, L.S. Heath, Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, J. Exp. Bot., 53 (2002) 1331–1341.
  36. H. Kuthan, H.-J. Haussmann, J. Werringloer, A spectrophotometric assay for superoxide dismutase activities in crude tissue fractions, Biochem. J., 237 (1986) 175–180.
  37. A.L. Truant, Manual of Commercial Methods in Clinical Microbiology International Edition, John Wiley & Sons, 2016.
  38. M. Chérif, Y. Tirilly, R.R. Bélanger, Effect of oxygen concentration on plant growth, lipidperoxidation, and receptivity of tomato roots to Pythium F under hydroponic conditions, Eur J Plant Pathol., 103 (1997) 255–264.
  39. M.C.N. Saparrat, M.J. Martínez, H.A. Tournier, M.N. Cabello, A.M. Arambarri, Production of ligninolytic enzymes by Fusarium solani strains isolated from different substrata, World J Microbiol Biotechnol., 16 (2000) 799–803.
  40. H. León‐Santiesteban, R. Bernal, F.J. Fernández, A. Tomasini, Tyrosinase and peroxidase production by Rhizopus oryzae strain ENHE obtained from pentachlorophenol‐contaminated soil, J. Chem. Technol. Biotechnol., 83 (2008) 1394–1400.
  41. A. Conesa, C.A.M.J.J. van den Hondel, P.J. Punt, Studies on the production of fungal peroxidases in Aspergillus niger, Appl. Environ. Microbiol., 66 (2000) 3016–3023.
  42. I.M. Banat, P. Nigam, D. Singh, R. Marchant, Microbial decolorization of textile-dyecontaining effluents: a review, Bioresour Technol., 58 (1996) 217–227.
  43. V. Kumar, R. Chandra, Characterisation of manganese peroxidase and laccase producing bacteria capable for degradation of sucrose glutamic acid-Maillard reaction products at different nutritional and environmental conditions, World J Microbiol Biotechnol., 34 (2018) 32.
  44. J. Lee, Biological conversion of lignocellulosic biomass to ethanol, J. Biotechnol., 56 (1997) 1–24.
  45. D.C. Kalyani, S.S. Phugare, U.U. Shedbalkar, J.P. Jadhav, Purification and characterization of a bacterial peroxidase from the isolated strain Pseudomonas sp. SUK1 and its application for textile dye decolorization, Ann. Microbiol., 61 (2011) 483–491.
  46. D.C. Kalyani, P.S. Patil, J.P. Jadhav, S.P. Govindwar, Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1, Bioresour. Technol., 99 (2008) 4635–4641.
  47. R. Franco, J.A. Cidlowski, Glutathione efflux and cell death, Antioxid. Redox. Signaling., 17 (2012) 1694–1713.
  48. M.A. Kohanski, D.J. Dwyer, B. Hayete, C.A. Lawrence, J.J. Collins, A common mechanism of cellular death induced by bactericidal antibiotics, Cell, 130 (2007) 797–810.
  49. I.M. Moller, Plant mitochondria and oxidative stress: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Specie, Annu. Rev. Plant Physiol. Plant Mol. Biol., 52 (2001) 561–591.
  50. G. Galati, O. Sabzevari, J.X. Wilson, J.P. O’Brian, Prooxidant activity and cellular effects of phenoxyl radicals of dietary flavonoides and other polyphenolics, Toxicol., 177 (2002) 91–104.
  51. R.K. Tewari, F. Hadacek, S. Sassmann, I. Lang, Iron deprivationinduced reactive oxygen species generation leads to nonautolytic PCD in Brassica napus leaves, Environ. Exp. Bot., 91 (2013) 74–83.
  52. V. Mittova, M. Tal, M. Volokita, M. Guy, Up−regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt−induced oxidative stress in the wild salt−tolerant tomato species Lycopersicon pennellii., Plant Cell Environ., 26 (2003) 845–856.
  53. X.M. Lu, P.Z. Lu, M.S. Huang, L.P. Dai, Seasonal variations and aeration effects on water quality improvements and physiological responses of Nymphaea tetragona Georgi., Int. J. Phytorem., 15 (2013) 522–535.