References
- G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for
the removal of phenol from fluid streams: short review of recent
developments, J. Hazard. Mater., 160 (2008) 265–288.
- D.N. Veeramachaneni, J.S. Palmer, R.P. Amann, Long-term
effects on male reproduction of early exposure to common
chemical contaminants in drinking water, Hum. Reprod., 16
(2001) 979–987.
- T. Al-Khalid, M. El-Naas, Aerobic biodegradation of phenols:
A comprehensive review, Crit. Rev. Environ. Sci. Technol., 42
(2012) 1631–1690.
- G.A. Hill, C.W. Robinson, Substrate inhibition kinetics: phenol
degradation by Pseudomonas putida, Biotechnol. Bioeng., 17
(1975) 1599–1615.
- W. Wang, H. Han, Recovery strategies for tackling the impact of
phenolic compounds in a UASB reactor treating coal gasification
wastewate, Bioresour. Technol., 103 (2012) 95–100.
- M. Gao, M.H. Diao, S. Yuan, Y.K. Wang, H. Xu, X.H. Wang,
Effects of phenol on physicochemical properties and treatment
performances of partial nitrifying granules in sequencing batch
reactors, Biotechnol. Rep., 13 (2017) 13–18.
- T. Phenrat, P. Teeratitayangkul, I. Prasertsung, R. Parichatprecha,
P. Jitsangiam, N. Chomchalow, S. Wichai, Vetiver plantlets in
aerated system degrade phenol in illegally dumped industrial
wastewater by phytochemical and rhizomicrobial degradation,
Environ. Sci. Pollut. Res., 24 (2017) 13235–13246.
- L.T. Danh, P. Truong, R. Mammucari, T. Tran, N. Foster, Vetiver
grass, Vetiveria zizanioides: a choice plant for phytoremediation
of heavy metals and organic wastes, Int. J. Phytorem., 11 (2009)
664–691.
- N. Aibibu, Y. Liu, G. Zeng, X. Wang, B. Chen, H. Song, L. Xu,
Cadmium accumulation in vetiveria zizanioides and its effects
on growth, physiological and biochemical characters, Bioresour.
Technol., 101 (2010) 6297–6303.
- L.T. Danh, P. Truong, R. Mammucari, N. Foster, Economic
incentive for applying vetiver grass to remediate lead,
copper and zinc contaminated soils, Int. J. Phytorem., 13
(2010) 47–60.
- P. Truong, T.T. Van, E. Pinners, Vetiver System Applications:
Technical Reference Manual, in, The Vetiver Network
International, San Antonio, Texas, 2007, pp. 126.
- S. Singh, J.S. Melo, S. Eapen, S.F. D’Souza, Potential of vetiver
(Vetiveria zizanoides L. Nash) for phytoremediation of phenol,
Ecotoxicol Environ. Saf., 71 (2008) 671–676.
- K. Das, A. Roychoudhury, Reactive oxygen species (ROS)
and response of antioxidants as ROS-scavengers during
environmental stress in plants, Front Environ Sci., 2 (2014) 53.
- S.G. Ibáñez, L.G.S. Alderete, M.I. Medina, E. Agostini,
Phytoremediation of phenol using Vicia sativa L. plants and
its antioxidative response, Environ. Sci. Pollut. Res., 19 (2012)
1555–1562.
- M.A. Talano, D.C. Busso, C.E. Paisio, P.S. González, S.A.
Purro, M.I. Medina, E. Agostini, Phytoremediation of
2,4-dichlorophenol using wild type and transgenic tobacco
plants, Environ. Sci. Pollut. Res., 19 (2012) 2202–2211.
- Y. Osem, Y. Chen, D. Levinson, Y. Hadar, The effects of plant
roots on microbial community structure in aerated wastewatertreatment
reactors, Ecol. Eng., 29 (2007) 133–142.
- M.A. Kamran, J.H. Syed, S.A. Eqani, M.F. Munis, H.J.
Chaudhary, Effect of plant growth-promoting rhizobacteria
inoculation on cadmium (Cd) uptake by Eruca sativa, Environ.
Sci. Pollut. Res., 22 (2015) 9275–9283.
- L. Zhang, J. Zhao, N. Cui, Y. Dai, L. Kong, J. Wu, S. Cheng,
Enhancing the water purification efficiency of a floating
treatment wetland using a biofilm carrier, Environ. Sci. Pollut.
Res., 23 (2016) 7437–7443.
- A. Valipour, Y.-H. Ahn, Constructed wetlands as sustainable
ecotechnologies in decentralization practices: a review, Environ.
Sci. Pollut. Res., 23 (2016) 180–197.
- E. Kurzbaum, F. Kirzhner, S. Sela, Y. Zimmels, R. Armon,
Efficiency of phenol biodegradation by planktonic Pseudomonas
pseudoalcaligenes (a constructed wetland isolate) vs. root and
gravel biofilm, Water Res., 44 (2010) 5021–5031.
- U. Stottmeister, A. Wiessner, P. Kuschk, U. Kappelmeyer,
M. Kästner, O. Bederski, R.A. Müller, H. Moormann, Effects
of plants and microorganisms in constructed wetlands for
wastewater treatment, Biotechnol. Adv., 22 (2003) 93–117.
- M.L. Da Silva, R. Kamath, P.J. Alvarez, Effect of simulated
rhizodeposition on the relative abundance of polynuclear
aromatic hydrocarbon catabolic genes in a contaminated soil,
Environ. Toxicol. Chem., 25 (2006) 386–391.
- E. Kurzbaum, Y. Zimmels, F. Kirzhner, R. Armon, Removal
of phenol in a constructed wetland system and the relative
contribution of plant roots, microbial activity and porous bed,
Water Sci. Technol., 62 (2010) 1327–1334.
- H. Moormann, P. Kuschk, U. Stottmeister, The effect of
rhizodeposition from helophytes on bacterial degradation of
phenolic compounds, Acta Biotechnol, 22 (2002) 107–112.
- H. Saleem, M. Arslan, K. Rehman, R. Tahseen, M. Afzal,
Phragmites australis — a helophytic grass — can establish
successful partnership with phenol-degrading bacteria in a
floating treatment wetland, Saudi J. Biol. Sci., In Press (2018).
- M. Afzal, S. Khan, S.I.M.S. Mirza, Q.M. Khan, Inoculation
method affects colonization and activity of Burkholderia
phytofirmans PsJN during phytoremediation of dieselcontaminated
soil, Int. Biodeterior. Biodegradation, 85 (2013)
331–336.
- O.M. Ontañon, P.S. González, L.F. Ambrosio, C.E. Paisio, E.
Agostini, Rhizoremediation of phenol and chromium by the
synergistic combination of a native bacterial strain and Brassica
napus hairy roots, Int. Biodeterior. Biodegrad., 88 (2014)
192–198.
- H. Saleem, K. Rehman, M. Arslan, M. Afzal, Enhanced
degradation of phenol in floating treatment wetlands by plantbacterial
synergism, Int. J. Phytorem., 20 (2018) 692–698.
- Y.N. Ho, J.L. Hsieh, C.C. Huang, Construction of a plantmicrobe
phytoremediation system: combination of vetiver
grass with a functional endophytic bacterium, Achromobacter
xylosoxidans F3B, for aromatic pollutants removal, Bioresour.
Technol., 145 (2013) 43–47.
- A. Ullah, S. Heng, M.F. Hussain Munis, S. Fahad, X. Yang,
Phytoremediation of heavy metals assisted by plant growth
promoting (PGP) bacteria: a review, Environ. Exp. Bot., 117
(2015) 28–40.
- R.B. Baird, A.D. Eaton, E.W. Rice, Standard Methods for the
Examination of Water and Wastewater, 23rd ed., American
Water Works Association/American Public Works Association/
Water Environment Federation, New York, 2017.
- A. Baxter, R. Mittler, N. Suzuki, ROS as key players in plant
stress signalling, J. Exp. Bot., 65 (2014) 1229–1240.
- S. Singh, J.S. Melo, S. Eapen, S.F. D’Souza, Phenol removal
using Brassica juncea hairy roots: role of inherent peroxidase
and H2O2, J. Biotechnol., 123 (2006) 43–49.
- B. Chance, A.C. Maehly, Assay of catalases and peroxidases,
Methods Enzymol., 2 (1955) 764–775.
- R.G. Alscher, N. Erturk, L.S. Heath, Role of superoxide
dismutases (SODs) in controlling oxidative stress in plants, J.
Exp. Bot., 53 (2002) 1331–1341.
- H. Kuthan, H.-J. Haussmann, J. Werringloer, A
spectrophotometric assay for superoxide dismutase activities in
crude tissue fractions, Biochem. J., 237 (1986) 175–180.
- A.L. Truant, Manual of Commercial Methods in Clinical
Microbiology International Edition, John Wiley & Sons, 2016.
- M. Chérif, Y. Tirilly, R.R. Bélanger, Effect of oxygen concentration
on plant growth, lipidperoxidation, and receptivity of tomato
roots to Pythium F under hydroponic conditions, Eur J Plant
Pathol., 103 (1997) 255–264.
- M.C.N. Saparrat, M.J. Martínez, H.A. Tournier, M.N. Cabello,
A.M. Arambarri, Production of ligninolytic enzymes by
Fusarium solani strains isolated from different substrata, World
J Microbiol Biotechnol., 16 (2000) 799–803.
- H. León‐Santiesteban, R. Bernal, F.J. Fernández, A. Tomasini,
Tyrosinase and peroxidase production by Rhizopus oryzae strain ENHE obtained from pentachlorophenol‐contaminated
soil, J. Chem. Technol. Biotechnol., 83 (2008) 1394–1400.
- A. Conesa, C.A.M.J.J. van den Hondel, P.J. Punt, Studies on the
production of fungal peroxidases in Aspergillus niger, Appl.
Environ. Microbiol., 66 (2000) 3016–3023.
- I.M. Banat, P. Nigam, D. Singh, R. Marchant, Microbial
decolorization of textile-dyecontaining effluents: a review,
Bioresour Technol., 58 (1996) 217–227.
- V. Kumar, R. Chandra, Characterisation of manganese
peroxidase and laccase producing bacteria capable for
degradation of sucrose glutamic acid-Maillard reaction
products at different nutritional and environmental conditions,
World J Microbiol Biotechnol., 34 (2018) 32.
- J. Lee, Biological conversion of lignocellulosic biomass to
ethanol, J. Biotechnol., 56 (1997) 1–24.
- D.C. Kalyani, S.S. Phugare, U.U. Shedbalkar, J.P. Jadhav,
Purification and characterization of a bacterial peroxidase from
the isolated strain Pseudomonas sp. SUK1 and its application
for textile dye decolorization, Ann. Microbiol., 61 (2011)
483–491.
- D.C. Kalyani, P.S. Patil, J.P. Jadhav, S.P. Govindwar,
Biodegradation of reactive textile dye Red BLI by an isolated
bacterium Pseudomonas sp. SUK1, Bioresour. Technol., 99
(2008) 4635–4641.
- R. Franco, J.A. Cidlowski, Glutathione efflux and cell death,
Antioxid. Redox. Signaling., 17 (2012) 1694–1713.
- M.A. Kohanski, D.J. Dwyer, B. Hayete, C.A. Lawrence, J.J.
Collins, A common mechanism of cellular death induced by
bactericidal antibiotics, Cell, 130 (2007) 797–810.
- I.M. Moller, Plant mitochondria and oxidative stress: Electron
Transport, NADPH Turnover, and Metabolism of Reactive
Oxygen Specie, Annu. Rev. Plant Physiol. Plant Mol. Biol., 52
(2001) 561–591.
- G. Galati, O. Sabzevari, J.X. Wilson, J.P. O’Brian, Prooxidant
activity and cellular effects of phenoxyl radicals of dietary
flavonoides and other polyphenolics, Toxicol., 177 (2002)
91–104.
- R.K. Tewari, F. Hadacek, S. Sassmann, I. Lang, Iron deprivationinduced
reactive oxygen species generation leads to nonautolytic
PCD in Brassica napus leaves, Environ. Exp. Bot., 91
(2013) 74–83.
- V. Mittova, M. Tal, M. Volokita, M. Guy, Up−regulation of
the leaf mitochondrial and peroxisomal antioxidative systems
in response to salt−induced oxidative stress in the wild salt−tolerant tomato species Lycopersicon pennellii., Plant Cell
Environ., 26 (2003) 845–856.
- X.M. Lu, P.Z. Lu, M.S. Huang, L.P. Dai, Seasonal variations
and aeration effects on water quality improvements and
physiological responses of Nymphaea tetragona Georgi., Int. J.
Phytorem., 15 (2013) 522–535.