References
- P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy
Metals Toxicity and the Environment, EXS, 101 (2012) 133–164.
- K. Chojnacka, A. Chojnacki, H. Gorecka, Trace element removal
by Spirulina sp. from copper smelter and refinery effluents,
Hydrometallurgy, 73 (2004) 147–153.
- M. Choudhary, U.K. Jetley, M.A. Khan, S. Zutshi, T. Fatma,
Effect of heavy metal stress on proline, malondialdehyde, and
superoxide dismutase activity in the cyanobacterium Spirulina
platensis-S5, Ecotoxicol, Environ. Saf., 66 (2007) 204–209.
- A.R. Suyama, N. Iwakin, K.A. Nishi, K. Nakamhra, K. Furakawa,
Engineering hybrid Pseudomonas capable of utilizing a wide
range of aromatic hydrocarbons and of efficient degradation of
trichloroethylene, J. Bacterial., 178 (1996) 4039–4046.
- T. Kuritz, C.P. Wolk, Use of cyanobacterial for biodegradation
of aromatic pollutants, Appl. Environ. Microbiol., 61 (1995)
238–243.
- S. Manzetti, E.R. van der Spoel, D. van der Spoel, Chemical
properties, environmental fate, and degradation of seven
classes of pollutants, Chem. Res. Toxicol., 27 (2014) 713–737.
- R. Dixit, Wasiullah, D. Malaviya, K. Pandiyan, U.B. Singh,
A. Sahu, R. Shukla, B.P. Singh, J.P. Rai, P.K. Sharma, H.
Lade, D. Paul, Bioremediation of heavy metals from soil and
aquatic environment: an overview of principles and criteria of
fundamental processes, Sustainability, 7 (2015) 2189–2212.
- A. Ahmad, A H. Bhat, A. Buang, S.M.U. Shah, M. Afzal,
Biotechnological application of microalgae for integrated palm
oil mill effluent (POME) remediation: a review, Int. J. Environ.
Sci. Technol., 16 (2019) 1763–1788.
- J.G. Lebkuecher, E.N. Tuttle, J.L. Johnson, N.K.S. Willis, Use of
algae to assess the trophic state of a stream in Middle Tennessee,
J. Freshwater. Ecol., 30 (2015) 349–376.
- E. Pinto, T.C.S. Sigaud-Kutner, M.A.S. Leituao, O.K. Oramoto,
D. Morse, P. Colepicolo, Review: heavy metal-induced oxidative
stress in algae, J. Phycol., 39 (2003) 1008–1018.
- A.M. Zakaria, Removal of cadmium and manganese by a nontoxic
strain of the freshwater cyanobacterium Gloeothece magna,
Wat. Res., 35 (2001) 4405–4409.
- J.M. Pena-Castro, F. Martinez-Jeronimo, F.E. Sparza-Garcia,
K.O. Canizares-Villanveva, Heavy metals removal by the
microalgae Scenedesmus incrassatulus in continuous cultures,
Bioresour. Technol., 94 (2004) 219–222.
- O. Keskinkana, M.Z.L. Goksub, A. Yuceera, M. Basibuyuka, C.F.
Forster, Heavy metal adsorption characteristics of a submerged
aquatic plant (Myriophyllum spicatum),. Process Biochem., 39
(2003) 179–183.
- A. Kulshreshtha, R. Agrawal, M. Barar, S. Saxena, Review on
bioremediation of heavy metals in contaminated water, IOSR J
Environ. Sci. Toxicol. Food Technol., 8 (2014) 44–50.
- N.F. Tam, J.P. Wong, Y.S. Wong, Repeated use of two chlorella
species, C. vulgaris and WWI for cyclic nickel biosorption,
Environ. Pollut., 114 (2001) 85–92.
- C.A. Mahan, V. Majidi, J.A. Holcombe, Evaluation of the metal
uptake of several algae strains in a multi component matrix
utilizing inductively coupled plasma emission spectrometry,
Anal. Chem., 15 (1989) 624–631.
- P.R. Pascucci, A.D. Kowalak, Public health benefits of using
algae for simultaneous multiple metal extraction from waters,
Rev. Environ. Health., 11 (1996) 205–211.
- P. Kaewsarn, Q. Yu, Cadmium (II) removal from aqueous
solutions by pre-treated biomass of marine algae Padina sp,
Environ. Pollut., 112 (2001) 209–213.
- D. Naghipour, K. Taghavi, J. Jaafari,Y. Mahdavi,
M.G. Ghozikali, R. Ameri, A. Jamshidi, A.H. Mahvi, Statistical
modeling and optimization of the phosphorus biosorption by
modified Lemna minor from aqueous solution using response
surface methodology (RSM), Desal. Wat. Treat., 57 (2016)
19431–19442.
- G.H. Safari, M. Zarrabi, M. Hoseini, H. Kamani, J. Jaafari,
A.H. Mahvi, Trends of natural and acid-engineered pumice
onto phosphorus ions in aquatic environment: adsorbent
preparation, characterization, and kinetic and equilibrium
modeling, Desal. Wat. Treat., 54 (2015) 3031–3043.
- S.L. Corder, M. Reeves, Biosorption of nickel in complex
aqueous waste streams by cyanobacteria. Appl. Biochem.
Biotechnol., 45–46 (1994) 847–859.
- J.N. Veenstra, D. Sanders, S. Ahn, Impact of chromium and
copper on fixed film biological systems, J. Environ. Eng., 125
(1999) 522–531.
- P. Volesky, I. Prasetyo, Cadmium removal in a biosorption
column, Biotechnol. Bioeng., 43 (1994) 1010–1015.
- E. Valdman, L. Erijman, F.L.P. Passoa, S.G.F. Leite, Continuous
biosorption of Cu and Zn by immobilized waste biomass
Sargassum sp, Process. Biochem., 36 (2001) 869–873.
- G. Yan, T. Viraraghavan, Heavy metal removal in a biosorption
column by immobilized M. rouxii biomass, Biores. Technol., 78
(2001) 243–249.
- P. Kaewsarn, Biosorption of copper (II) from aqueous solutions
by pre- treated biomass of marine algae Padina sp, Chemosphere,
47 (2002) 1081–1085.
- A. Ahmad, A.H. Bhat, A. Buang, Immobilized Chlorella vulgaris for efficient palm oil mill effluent treatment and heavy metals
removal, Desal. Wat. Treat., 81 (2017) 105–117.
- A. Ahmada, A.H. Bhatb, A. Buanga, Biosorption of transition
metals by freely suspended and Ca-alginate immobilized with
Chlorella vulgaris: kinetic and equilibrium modeling, J. Cleaner
Prod., 171 (2018) 1361–1375.
- A. Ahmad, A.H. Bhat, A. Buang, Enhanced biosorption of
transition metals by living Chlorella vulgaris immobilized in
Ca-alginate beads, J. Environ. Technol., 1 (2018) 1–17.
- B. Volesky, J. Weber, J.M. Park, Continuous flow metal
biosorption in a regenerable Sargassum column, Wat. Res., 37
(2003) 297–306.
- C. Sorakin, Growth Measurements. Division rate, in R.S Stein
(Ed). Handbook of Physiological Methods, Culture Methods
and Growth Measurement. Cambridge Univ. Press, Cambridge.
202 (1979) 321–343.
- L. Clesceri, A Greenberg, A. Eaton,. Standard methods for
the examination of water and wastewater, 20th ed., American
Public Health Association (APHA), American Water Work
Association (AWWA), Water Environment Federation (WEF),
Washington, D.C. 1999.
- V.I. Grandova, S.N. Gromdev, A.S. Doycheva, Bioremediation
of waters contaminated with crude oil and toxic heavy metals,
Int. J. Miner Process., 62 (2001) 293–299.
- A.A. Ansari, S.S.G.R. Gill, G.R.L.L. Newman (Eds),
Phytoremediation Management of Environmental
Contaminants, Springer International Publishing, Switzerland,
3 (2016) 29–208. ISBN 978–3–319–40146–1, ISBN 978–3–319–
40148–5 (eBook).
- C.J. Tien, Biosortion of metal ions by freshwater algae with
different surface characteristics, Process Biochem., 38 (2002)
605–613.
- M.M. El-Sheekh, W.A. E-Shouny, M.E.H. Osman, E.W.E.
El-Gammal, Growth and heavy metals removal efficiency of
Nostoc muscorum and Anabaena subcylindrica in sewage and
industrial wastewater effluents, Environ. Toxicol. Pharmacol.,
19 (2005) 357–365.
- M. Das. A. Adholeya, Potential Uses of Immobilized Bacteria,
Fungi, Algae, and Their Aggregates for Treatment of Organic
and Inorganic Pollutants in Wastewater. In: Water Challenges
and Solutions on a Global Scale, S. Ahuja, J.B. de Andrade,
D.D. Dionysiou, K.D. Hristovski and B.G. Loganathan (eds).
Chapter 15 (2015) 319–337, American Chemical Society (ACS)
Symposium Series, Vol. 1206.
- C.M. Martins, L.M.C.G. Fiúza, S.T. Sandra, T. Santaella,
Immobilization of microbial cells: a promising tool for treatment
of toxic pollutants in industrial wastewater, Review. African J.
Biotech., 12 (2013) 4412–4418.
- O.J. Iye, Bioremediation of heavy metal polluted water using
immobilized freshwater green microalga, Botryococcus sp.
(2015), MSc., Faculty of Science, Technology and Human
Development, University of Tun Hussein Onn, Malaysia.
- S.M. Selimoglu, M. Elibol, Alginate as an immobilization
material for MAb production via encapsulated hybridoma cells,
J. Crit. Rev. Biotech., 30 (2010) 145–159.
- C.L. Soo, C.A. Chen, O. Bojo, Y.S. Hii, Feasibility of marine
microalgae immobilization in alginate bead for marine
water treatment: bead stability, cell growth, and ammonia
removal, Int J Polym. Sci., (2017): Article ID 6951212, 7 pages
DOI: org/10.1155/2017/6951212 (2017).
- A. Tsygankov, S. Kosourov, Immobilization of Photosynthetic
Microorganisms for Efficient Hydrogen Production. In: Zannoni
D, De Philippis R (eds) Microbial Bio-Energy: Hydrogen
Production. Advances in Photosynthesis and Respiration
(Including Bioenergy and Related Processes). Vol. 38 (2014)
Springer, Dordrecht
- A. Blanco, B. Sanz, M.J. Llama, J.L. Serra, Biosorption of heavy
metals to immobilized Phormidium laminosum biomass,J.
Biotechnol., 69 (1999) 227–240.
- S.P. Singh, V. Yadava, Cadmium uptake in Anacystis nidulans:
effect of modifying factors, J Gen. Appl. Microbiol., 33(1985)
39–48.
- Z. Chen, L. Ren, Q. Shao, D. Shi, B. Ru, Expression of mammalian
metallothionein-I gene in cyanobacteria to enhance heavy metal
resistance, Mar. Poll. Bull., 39 (1999) 155–158.
- I. Moreno-Garrido, O. Campana, L.M. Lubián, J. Blasco,
Calcium alginate immobilized marine microalgae: experiments
on growth and short-term heavy metal accumulation, Mar. Poll.
Bull., 51 (2005) 823–829.
- K. Vijayaraghavan, J. Jegan, K. Palanivelu, M. Velan, Biosorption
of copper, cobalt and nickel by marine green alga Ulva reticulate in a packed column, Chemosphere., 60 (2005) 419–426.
- S. Szabo, M. Braun, G. Borics, Elemental flux between algae and
duckweeds (Lemna gibba) during competition, Arch. Hydrobiol.,
149 (1999) 355–367.
- Q. Shao, D. JiShi, F. Ying-Hao, L. Na Ma, J.Z. Chen, M. MinYu,
B. Gen RU, Cloning and expression of metallothionein mutant
α-KKS-α in Anabaena sp. PCC 7120, Mar. Pollut. Bull., 45 (2002)
163–167.
- W. Maznah, A.T.
Al-Fawwaz, M. Surif, Biosorption of copper and zinc by
immobilized and free algal biomass, and the effects of metal
biosorption on the growth and cellular structure of Chlorella sp.
and Clamydomonas sp. isolated from rivers in Penang, Malaysia.
J. Environ. Sci., 24(8) (2012) 1386–1393.
- A.K.J. Sallal, Growth of algae and cyanobacteria on sewage
effluents, Microb. Lett., 20 (1982) 7–13.
- S. Kanchana, J. Jeyanthi, R. Kathiravan, K. Suganya, Biosorption
of heavy metals using algae: a review, Int. J. Pharm. Med.
Biol. Sci., 3 (2014) 9.