References
- R. Wahi, A. Idris, M.A. Mohd Salleh, K. Khalid, Low temperature
microwave pyrolysis of sewage sludge, Int. J. Eng. Technol., 3
(2006) 132–138.
- Q. Xie, P. Peng, S. Liu, M. Min, Y. Cheng, Y. Wan, Y. Li, X. Lin,
Y. Liu, P. Chen, R. Ruan, Fast microwave-assisted catalytic
pyrolysis of sewage sludge for bio-oil production, Bioresour.
Technol., 172 (2014) 162–168.
- Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S.
Liang, X.C. Wang, A review on the occurrence of micropollutants
in the aquatic environment and their fate and removal during
wastewater treatment, Sci. Total Environ., 473–474 (2014)
619–641.
- S.A. Carr, J. Liu, A.G. Tesoro, Transport and fate of microplastics
particles in wastewater treatment plants, Water Res., 91 (2016)
174–182.
- A. Callegari, P. Hlavinek, A.G. Capodaglio, Production of
Energy (biodiesel) and Recovery of Materials (biochar) From
Pyrolysis of Waste Urban Sludge, Revista Ambiente e Agua,
2018.
- A.G. Capodaglio, A. Callegari, D. Dondi, Microwave-induced
pyrolysis for production of sustainable biodiesel from waste
sludges, Waste Biomass Valorization, 7 (2016) 703–709.
- A.G. Capodaglio, A. Callegari, Feedstock and process influence
on biodiesel produced from waste sewage sludge, J. Environ.
Manage., 216 (2018) 176–182.
- B. Zhao, X. Xu, S. Xu, X. Chen, H. Li, F. Zeng, Surface
characteristics and potential ecological risk evaluation of heavy
metals in the bio-char produced by co-pyrolysis from municipal
sewage sludge and hazelnut shell with zinc chloride, Bioresour.
Technol., 243 (2017) 375–383.
- S.A. Carr, J. Liu, A.G. Tesoro, Transport and fate of microplastics
particles in wastewater treatment plants, Water Res., 91 (2016)
174–182.
- I. Fonts, G. Gea, M. Azuara, J. Abrego, J. Arauzo, Sewage
sludge pyrolysis for liquid production: a review, Renew.
Sustain. Energy Rev., 16 (2012) 2781–2805.
- H. Kambo, A. Dutta, A comparative review of biochar and
hydrochar in terms of production, physico-chemical properties
and applications, Renew. Sustain. Energy Rev., 45 (2015)
359–378.
- P. Rousset, L. Macedo, J.M. Commandré, A. Moreira, Biomass
torrefaction under different oxygen concentrations and its
effect on the composition of the solid by-product, J. Anal. Appl.
Pyrolysis, 96 (2012) 86–91.
- H. Lu, W. Zhang, S.Z. Wang, L. Zhuang, Y. Yang, R. Qiu,
Characterization of sewage sludge-derived biochars from
different feedstocks and pyrolysis temperatures, J. Anal. Appl.
Pyrolysis, 102 (2013) 137–143.
- L. Kubík, Risk Elements in Sludge From Sewage Treatment
Plants (WWTPs). Biom.cz. 2009-02-09 [cit. 2019-02-23].
Available at: http://www. biom.cz/en/odborne-clanky/rizikove-prvky-v-kalech-z-cistiren-odpadnich-vod-cov.
- E. Agrafioti, G. Bouras, D. Kalderis, E. Diamadopoulos, Biochar
production by sewage sludge pyrolysis, J. Anal. Appl. Pyrolysis,
101 (2013) 72–78.
- M.K. Hossain, V.K. Strezov, Y. Chan, A. Ziolkowski, P.F. Nelson,
Influence of pyrolysis temperature on production and nutrient
properties of wastewater sludge biochar, J. Environ. Manage.,
92 (2011) 223–228.
- D.A. Roberts, A.J. Cole, A. Whelan, R. Nys, N.A. Paul, Slow
pyrolysis enhances the recovery and reuse of phosphorus and
reduces metal leaching from biosolids, Waste Manage., 64
(2017) 133–139.
- E. Antunes, J. Schumann, G. Brodie, V.J. Mohan, P.A. Schneider,
Biochar produced from biosolids using a single-mode
microwave: characterisation and its potential for phosphorus
removal, J. Environ. Manage., 196 (2017) 119–126.
- J. Lehmann, S. Joseph, Biochar for Environmental Management:
Science and Technology, Sterling, VA: Earthscan in the UK and
USA, 2009.
- F. Verheijen, S. Jeffery, A.C. Bastos, M. Velde, I. Diafas, Biochar
Application to Soils: A Critical Scientific Review on Soil
Properties, Processes and Functions, European Commission,
Office for Official Publications of the European Communities,
Luxembourg, 2010.
- P. Conte, H.P. Schmidt, G. Cimò, Research and Application
of Biochar in Europe, in Agricultural and Environmental
Applications of Biochar: Advances and Barriers, M. Guo, Z. He,
M. Uchimiya, Eds., SSSA: USA, 2015.
- R. Thangarajan, N. Bolan, S. Mandal, A. Kunhikrishnan,
G. Choppala, R. Karunanithi, F. Qi, Biochar for Inorganic
Contaminant Management in Soil. In: M.H. Wong, Y.S. Ok, Eds.,
Biochar: Production, Characterization and Applications, CRC
Press Taylor and Francis Group, 2016, pp. 46–65.
- Council Directive 86/278/EEC of 12 June 1986 on the protection
of the environment, and in particular of the soil, when sewage
sludge is used in agriculture, 1986.
- USEPA, Biosolids Generation, Use and Disposal in the United
States; USEPA Office of Solid Waste: Washington, D.C., USA, 1999.
- IBI - International Biochar Initiative, Standardized Product
Definition and Product Testing Guidelines for Biochar that is
Used in Soil, Product Definition and Specification Standards,
2015.
- EBC - European Biochar Certificate, Guidelines for a Sustainable
Production of Biochar, European Biochar Foundation (EBC),
Arbaz, Switzerland, Available at: http://www.european-biochar.org/en/download, Version 6.3E of 14th, 2017.
- P. Conte, Biochar, soil fertility, and environment, Biol. Fertil.
Soils, 50 (2014) 1175.
- T. Liu, Z. Liu, Q. Zheng, Q. Lang, Y. Xia, N. Peng, C. Gai, Effect
of hydrothermal carbonization on migration and environmental
risk of heavy metals in sewage sludge during pyrolysis,
Bioresour. Technol., 247 (2018) 282–290.
- X. Liu, Y. Wang, C. Gui, P. Li, J. Zhang, H. Zhong, Y. Wei,
Chemical forms and risk assessment of heavy metals in sludgebiochar
produced by microwave-inducted pyrolysis, RSC Adv.,
6 (2016) 101960–101967.
- J. Jin, Y. Li, J. Zhang, S. Wu, Y. Cao, P. Liang, J. Zhang, M.H.
Wong, M. Wang, S. Shan, P. Christie, Influence of pyrolysis
temperature on properties and environmental safety of heavy
metals in biochars derived from municipal sewage sludge, J.
Hazard. Mater., 320 (2016) 417–426.
- J. Ševčík, J. Raček, P. Hluštík, P. Hlavínek, K. Dvořák, Microwave
pyrolysis full-scale application on sewage sludge, Desal. Wat.
Treat., 112 (2018) 161–170.
- J. Raček, A.G. Capodaglio, J. Ševčík, T. Chorazy, P. Hlavínek,
Microwave Pyrolysis Treatment of Sewage Sludge: Performed
at Laboratory and Full-Scale Conditions. In 17th International
Multidisciplinary Scientific Geoconference SGEM 2017,
International Multidisciplinary Geoconference SGEM, Bulgaria:
SGEM, 2017, pp. 107–114.
- M. Vollmer, Physics of the microwave oven, Phys. Educ., 39
(2004) 74–81.
- R.C. Kistler, F. Widmer, P.H. Brunner, Behavior of chromium,
nickel, copper, zinc, cadmium, mercury and lead during
pyrolysis of sewage sludge, Environ. Sci. Technol., 21 (1987)
704–708.