References

  1. R. Wahi, A. Idris, M.A. Mohd Salleh, K. Khalid, Low temperature microwave pyrolysis of sewage sludge, Int. J. Eng. Technol., 3 (2006) 132–138.
  2. Q. Xie, P. Peng, S. Liu, M. Min, Y. Cheng, Y. Wan, Y. Li, X. Lin, Y. Liu, P. Chen, R. Ruan, Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production, Bioresour. Technol., 172 (2014) 162–168.
  3. Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473–474 (2014) 619–641.
  4. S.A. Carr, J. Liu, A.G. Tesoro, Transport and fate of microplastics particles in wastewater treatment plants, Water Res., 91 (2016) 174–182.
  5. A. Callegari, P. Hlavinek, A.G. Capodaglio, Production of Energy (biodiesel) and Recovery of Materials (biochar) From Pyrolysis of Waste Urban Sludge, Revista Ambiente e Agua, 2018.
  6. A.G. Capodaglio, A. Callegari, D. Dondi, Microwave-induced pyrolysis for production of sustainable biodiesel from waste sludges, Waste Biomass Valorization, 7 (2016) 703–709.
  7. A.G. Capodaglio, A. Callegari, Feedstock and process influence on biodiesel produced from waste sewage sludge, J. Environ. Manage., 216 (2018) 176–182.
  8. B. Zhao, X. Xu, S. Xu, X. Chen, H. Li, F. Zeng, Surface characteristics and potential ecological risk evaluation of heavy metals in the bio-char produced by co-pyrolysis from municipal sewage sludge and hazelnut shell with zinc chloride, Bioresour. Technol., 243 (2017) 375–383.
  9. S.A. Carr, J. Liu, A.G. Tesoro, Transport and fate of microplastics particles in wastewater treatment plants, Water Res., 91 (2016) 174–182.
  10. I. Fonts, G. Gea, M. Azuara, J. Abrego, J. Arauzo, Sewage sludge pyrolysis for liquid production: a review, Renew. Sustain. Energy Rev., 16 (2012) 2781–2805.
  11. H. Kambo, A. Dutta, A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications, Renew. Sustain. Energy Rev., 45 (2015) 359–378.
  12. P. Rousset, L. Macedo, J.M. Commandré, A. Moreira, Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product, J. Anal. Appl. Pyrolysis, 96 (2012) 86–91.
  13. H. Lu, W. Zhang, S.Z. Wang, L. Zhuang, Y. Yang, R. Qiu, Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures, J. Anal. Appl. Pyrolysis, 102 (2013) 137–143.
  14. L. Kubík, Risk Elements in Sludge From Sewage Treatment Plants (WWTPs). Biom.cz. 2009-02-09 [cit. 2019-02-23]. Available at: http://www. biom.cz/en/odborne-clanky/rizikove-prvky-v-kalech-z-cistiren-odpadnich-vod-cov.
  15. E. Agrafioti, G. Bouras, D. Kalderis, E. Diamadopoulos, Biochar production by sewage sludge pyrolysis, J. Anal. Appl. Pyrolysis, 101 (2013) 72–78.
  16. M.K. Hossain, V.K. Strezov, Y. Chan, A. Ziolkowski, P.F. Nelson, Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar, J. Environ. Manage., 92 (2011) 223–228.
  17. D.A. Roberts, A.J. Cole, A. Whelan, R. Nys, N.A. Paul, Slow pyrolysis enhances the recovery and reuse of phosphorus and reduces metal leaching from biosolids, Waste Manage., 64 (2017) 133–139.
  18. E. Antunes, J. Schumann, G. Brodie, V.J. Mohan, P.A. Schneider, Biochar produced from biosolids using a single-mode microwave: characterisation and its potential for phosphorus removal, J. Environ. Manage., 196 (2017) 119–126.
  19. J. Lehmann, S. Joseph, Biochar for Environmental Management: Science and Technology, Sterling, VA: Earthscan in the UK and USA, 2009.
  20. F. Verheijen, S. Jeffery, A.C. Bastos, M. Velde, I. Diafas, Biochar Application to Soils: A Critical Scientific Review on Soil Properties, Processes and Functions, European Commission, Office for Official Publications of the European Communities, Luxembourg, 2010.
  21. P. Conte, H.P. Schmidt, G. Cimò, Research and Application of Biochar in Europe, in Agricultural and Environmental Applications of Biochar: Advances and Barriers, M. Guo, Z. He, M. Uchimiya, Eds., SSSA: USA, 2015.
  22. R. Thangarajan, N. Bolan, S. Mandal, A. Kunhikrishnan, G. Choppala, R. Karunanithi, F. Qi, Biochar for Inorganic Contaminant Management in Soil. In: M.H. Wong, Y.S. Ok, Eds., Biochar: Production, Characterization and Applications, CRC Press Taylor and Francis Group, 2016, pp. 46–65.
  23. Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture, 1986.
  24. USEPA, Biosolids Generation, Use and Disposal in the United States; USEPA Office of Solid Waste: Washington, D.C., USA, 1999.
  25. IBI - International Biochar Initiative, Standardized Product Definition and Product Testing Guidelines for Biochar that is Used in Soil, Product Definition and Specification Standards, 2015.
  26. EBC - European Biochar Certificate, Guidelines for a Sustainable Production of Biochar, European Biochar Foundation (EBC), Arbaz, Switzerland, Available at: http://www.european-biochar.org/en/download, Version 6.3E of 14th, 2017.
  27. P. Conte, Biochar, soil fertility, and environment, Biol. Fertil. Soils, 50 (2014) 1175.
  28. T. Liu, Z. Liu, Q. Zheng, Q. Lang, Y. Xia, N. Peng, C. Gai, Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis, Bioresour. Technol., 247 (2018) 282–290.
  29. X. Liu, Y. Wang, C. Gui, P. Li, J. Zhang, H. Zhong, Y. Wei, Chemical forms and risk assessment of heavy metals in sludgebiochar produced by microwave-inducted pyrolysis, RSC Adv., 6 (2016) 101960–101967.
  30. J. Jin, Y. Li, J. Zhang, S. Wu, Y. Cao, P. Liang, J. Zhang, M.H. Wong, M. Wang, S. Shan, P. Christie, Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge, J. Hazard. Mater., 320 (2016) 417–426.
  31. J. Ševčík, J. Raček, P. Hluštík, P. Hlavínek, K. Dvořák, Microwave pyrolysis full-scale application on sewage sludge, Desal. Wat. Treat., 112 (2018) 161–170.
  32. J. Raček, A.G. Capodaglio, J. Ševčík, T. Chorazy, P. Hlavínek, Microwave Pyrolysis Treatment of Sewage Sludge: Performed at Laboratory and Full-Scale Conditions. In 17th International Multidisciplinary Scientific Geoconference SGEM 2017, International Multidisciplinary Geoconference SGEM, Bulgaria: SGEM, 2017, pp. 107–114.
  33. M. Vollmer, Physics of the microwave oven, Phys. Educ., 39 (2004) 74–81.
  34. R.C. Kistler, F. Widmer, P.H. Brunner, Behavior of chromium, nickel, copper, zinc, cadmium, mercury and lead during pyrolysis of sewage sludge, Environ. Sci. Technol., 21 (1987) 704–708.