References

  1. A.A. Khan, R.Z. Gaur, V.K. Tyagi, B. Lew, V. Diamantis, A.A. Kazmi, I. Mehrotra, Fecal coliform removal from the effluent of UASB reactor through diffused aeration, Desal. Water Treat., 39 (2012) 41–44.
  2. X. Jiang, J. Shen, Y. Han, S. Lou, W. Han, X. Sun, J. Li, Y. Mu, L. Wang, Efficient nitro reduction and dechlorination of 2,4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket: A comprehensive study, Water Res., 88 (2016) 257–265.
  3. X. Peng, S.Y. Zhang, L. Li, X. Zhao, Y. Ma, D. Shi, Long-term high-solids anaerobic digestion of food waste: effects of ammonia on process performance and microbial community, Bioresour. Technol., 262 (2018) 148–158.
  4. Y. Maspolim, Y. Zhou, C. Guo, K. Xiao, W.J. Ng, Determination of the archaeal and bacterial communities in two-phase and single-stage anaerobic systems by 454 pyrosequencing, J. Environ. Sci., 36 (2015) 121–129.
  5. A. Karlsson, P. Einarsson, A. Schnurer, C. Sundberg, J. Ejlertsson, B.H. Svensson, Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester, J. Biosci. Bioeng., 114 (2012) 446–452.
  6. M.S. Barredo, L.M. Evison, Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values, Appl. Environ. Microbiol., 57 (1991) 1764–1769.
  7. R.K. Dhaked, C.K. Waghmare, S.I. Alam, D.V. Kamboj, L. Singh, Effect of propionate toxicity on methanogenesis of night soil at phychrophilic temperature, Bioresour. Technol., 87 (2003) 299–303.
  8. P. Worm, F.G. Fermoso, P.N.L. Lens, C.M. Plugge, Decreased activity of a propionate degrading community in a UASB reactor fed with synthetic medium without molybdenum, tungsten and selenium, Enzym. Microb. Technol., 45 (2009) 139–145.
  9. A.J.M. Stams, D.Z. Sousa, R. Kleerebezem, C.M. Plugge, Role of syntrophic microbial communities in high-rate methanogenic bioreactors, Water Sci. Technol., 66 (2012) 352–362.
  10. J. Li, Q. Ban, L. Zhang, A.K. Jha, Syntrophic propionate degradation in anaerobic digestion: A review, Int. J. Agric. Biol., 5 (2012) 843–850.
  11. T. Narihiro, T. Terada, A. Ohashi, Y. Kamagata, K. Nakamura, Y. Sekiguchi, Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method, Water Res., 46 (2012) 2167–2175.
  12. H.J.H. Harmsen, M.P. Kengen, A.D.L. Akkermans, A.J.M. Stams, W.M. de Vos, Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes, Appl. Environ. Microbiol., 62 (1996) 1656–1663.
  13. T. Lueders, B. Pommerenke, M.W. Friedrich, Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil, Appl. Environ. Microbiol., 70 (2004) 5778–5786.
  14. S. Ahlert, R. Zimmermann, J. Ebling, H. König, Analysis of propionate-degrading consortia from agricultural biogas plants, Microbial. Open, 5 (2016) 1027–1037.
  15. L. Zhang, J. Li, Q. Ban, J. He, A.K. Jha, Metabolic pathways of hydrogen production in fermentative acidogenic microflora, J. Microbiol. Biotechnol., 22 (2012) 668–673.
  16. T. Amani, M. Nosrati, S.M. Mousavi, Response surface methodology analysis of anaerobic syntrophic degradation of volatile fatty acids in an upflow anaerobic sludge bed reactor inoculated with enriched cultures, Biotechnol. Bioprocess Eng., 17 (2012) 133–144.
  17. J. Ma, J. Mungonia, W. Verstrae, M. Carballa, Maximum removal rate of propionic acid as sole carbon source in UASB reactors and the importance of the macro-/micro-nutrients stimulation, Bioresour. Technol., 100 (2009) 477–3482.
  18. Q. Ban, J. Li, L. Zhang, A.K. Jha, Y. Zhang, Quantitative analysis of previously identified propionate-oxidizing bacteria and methanogens at different temperatures in an UASB reactor containing propionate as a sole carbon source, Appl. Biochem. Biotechnol., 171 (2014) 2129–2141.
  19. L. Zhang, Q. Ban, J. Li, A.K. Jha, Response of syntrophic propionate degradation to pH decrease and microbial community shifts in an UASB Reactor, J. Microbiol. Biotechnol., 26 (2016) 1409–1419.
  20. H.D. Ariesyady, T. Ito, S. Okabe, Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge, Water Res., 41 (2007) 1554–1568.
  21. J.W. Lim, T. Ge, Y.W. Tong, Monitoring of microbial communities in anaerobic digestion sludge for biogas optimization, Waste Manage., 71 (2018) 334–341.
  22. A. Joyce, U.Z. Ijaz, C. Nzeteu, A. Vaughan, S.L. Shirran, C.H. Botting, C. Quince, V. O’Flaherty, F. Abram, Linking microbial community structure and function during the acidified anaerobic digestion of grass, Front. Microbiol., 9, 540.
  23. Q. Ban, J. Li, L. Zhang, A.K. Jha, Syntrophic propionate degradation response to temperature decrease and microbial community shift in an UASB Reactor, J. Microbiol. Biotechnol., 23 (2013) 382–389.
  24. Q. Ban, J. Li, L. Zhang, A.K. Jha, N. Loring, Linking performance with microbial community characteristics in an anaerobic baffled reactor, Appl. Biochem. Biotechnol., 169 (2013) 1822–1836.
  25. APHA, Standard methods for the examination of water and wastewater, American Public Health Association (Ed), 1995.
  26. Y. Wang, P.Y. Qian, Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies, PLoS One, 4 (2009) 1–9.
  27. J.L. DiPippo, C.L. Nesbø, H. Dahle, W.F. Doolittle, N.K. Birkland, K.M. Noll, Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid, Int. J. Syst. Evol. Microbiol., 59 (2009) 2991–3000.
  28. A. Grabowski, B.J. Tindall, V. Bardin, D. Blanchet, C. Jeanthon, Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir, Int. J. Syst. Evol. Microbiol., 55 (2005) 1113–1121.
  29. M.J. McInerney, L. Rohlin, H. Mouttaki, U. Kim, R.S. Krupp, L. Rios-Hernandez, J. Sieber, C.G. Struchtemeyer, A. Bhattacharyya, J.W. Campbell, R.P. Gunsalus, The genome of Syntrophus aciditrophicus: Life at the thermodynamic limit of microbial growth, PNAS, 104 (2007) 7600–7605.
  30. M.J. McInerney, C.G. Struchtemeyer, J. Sieber, H. Mouttaki, A.J.M. Stams, B. Schink, L. Rohlin, R.P. Gunsalus, Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism, Ann. N. Y. Acad. Sci., 1125 (2008) 58–72.
  31. T. Iino, K. Mori, Y. Uchino, T. Nakagawa, S. Harayama, K. Suzuki, Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria, Int. J. Syst. Evol. Microbiol., 60 (2010) 1376–1382.
  32. G. Luo, I. Angelidaki, Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and ion torrent sequencing, Water Res., 60 (2014) 156–163.
  33. C. Díaz, S. Baena, M.L. Fardeau, B.K.C. Patel, Aminiphilus circumscriptus gen. nov., sp. nov., ananaerobic amino-acid-degrading bacterium from an upflow anaerobic sludge reactor, Int. J. Syst. Evol. Microbiol., 57 (2007) 1914–1918.
  34. Y. Zhang, X. Wang, M. Hu, P. Li, Effect of hydraulic retention time (HRT) on the biodegradation of trichloroethylene wastewater and anaerobic bacterial community in the UASB reactor, Appl. Microbiol. Biotechnol., 99 (2015) 1977–1987.
  35. W.P.K. Jr, J.C.M. Scholten, D. Culley, R. Hickey, W. Zhang, F.J. Brockman, Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed, Microbiology, 156 (2010) 2418–2427.
  36. T. Shigematsu, S. Era, Y. Mizuno, K. Ninomiya, Y. Kamegawa, S. Morimura, K. Kida, Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes, Appl. Microbiol. Biotechnol., 72 (2006) 401–415.
  37. Y. Liu, D.L. Balkwill, H.C. Aldrich, G.R. Drake, D.R. Boone, Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii, Int. J. Syst. Bacteriol., 49 (1999) 545–556.
  38. B. Demirel, P. Scherer, The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass methane: a review, Rev. Environ. Sci. Biol., 7 (2008) 173–190.
  39. Y. Liu, W.B. Whitman, Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea, Ann. N. Y. Acad. Sci., 1125 (2008) 171–189.
  40. M. Keyser, R.C. Witthuhn, C. Lamprecht, M.P.A. Coetzee, T.J. Britz, PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules, Syst. Appl. Microbiol., 29 (2006) 77–84.
  41. P. Antwi, J. Li, P.O. Boadi, J. Meng, E. Shi, X. Chi, Y. Zhang, Functional bacterial and archaeal diversity revealed by 16S rRNA gene pyrosequencing during potato starch processing wastewater treatment in an UASB, Bioresour. Technol., 235 (2017) 348–357.
  42. T.P. Delforno, G.V.L. Júnior, M.F. Noronha, I.K. Sakamoto, M.B.A. Varesche, V.M. Oliveira, Microbial diversity of a fullscale UASB reactor applied to poultry slaughterhouse wastewater treatment: integration of 16S rRNA gene amplicon and shotgun metagenomic sequencing, Microbiology Open, 6 (2017).
  43. M.A. Horn, C. Matthies, K. Kϋsel, A. Schramm, Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of methane-emitting acidic peat, Appl. Environ. Microbiol., 69 (2003) 74–8338.
  44. R.T. Williams, R.L. Crawford, Methanogenic bacteria, including an acid-tolerant strain, from peatlands, Appl. Environ. Microbiol., 50 (1985) 1542–1544.
  45. K. Alsouleman, B. Linke, J. Klang, M. Klocke, N. Krakat, S. Theuerl, Reorganization of a mesophilic biogas microbiome as response to a stepwise increase of ammonium nitrogen induced by poultry manure supply, Bioresour. Technol., 208 (2016) 200–204.
  46. M. Westerholm, J. Dolfing, A. Sherry, N.D. Gray, I.M. Head, A. Schnürer, Quantification of syntrophic acetate-oxidizing microbial communities in biogas processes, Environ. Microbiol. Rep., 3 (2011) 500–505.
  47. S.H. Lee, J.H. Park, S.H. Kim, B.J. Yu, J.J. Yoon, H.D. Park, Evidence of syntrophic acetate oxidation by Spirochaetes during anaerobic methane production, Bioresour. Technol., 190 (2015) 543–549.
  48. S. Poirier, C. Madigou, T. Bouchez, O. Chapleur, Improving anaerobic digestion with support media: mitigation of ammonia inhibition and effect on microbial communities, Bioresour. Technol., 235 (2017) 229–239.