References

  1. A. Pivato, R. Raga, Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner, Waste Manage., 26 (2006), 123–132.
  2. A. Demdoum, M.K. Gueddouda, I. Goual, Effect of water and leachate on hydraulic behavior of compacted bentonite, calcareous sand and tuff mixtures for use as landfill liners, Geotech Geol Eng., 35 (2017) 2677.
  3. P. Kjeldsen, M.A. Barlaz, A.P. Rooker, A. Baun, A. Ledin, T.H. Christensen, Present and long-term composition of MSW landfill leachate: a review, Crit. Rev. Environ. Sci. Technol., 32(4) (2002) 297–336.
  4. H.A. Aziz, M.N. Adlan, M.S.M. Zahari, S. Alias, Removal of ammoniacal–nitrogen (N–NH3) from municipal solid waste leachate by using activated carbon and lime stone, Waste Manage., 22 (2004) 371–375.
  5. A.H. Oren, R.C. Akar, Swelling and hydraulic conductivity of bentonites permeated with landfill leachates, Appl. Clay Sci., 142 (2017) 81–89.
  6. S.L. Ding, Y.Z. Sun, C.N. Yang, B.H. Xu, Removal of copper from aqueous solutions by bentonites and the factors affecting it, Min. Sci. Technol., 19 (2009) 489–492.
  7. HJ. Lu, MT. Luan, JL. Zhang, Y.X. Yu, Study on the adsorption of Cr(VI) onto landfill liners containing granular activated carbon or bentonite activated by acid, J. China Univ. Mining Technol., 18(1) (2008) 125–130.
  8. A. Akkoyunlu, Y. Avşar, G.O. Erguven, Hazardous waste management in Turkey, J. Hazard. Toxic Radioact. Waste, 21(4) (2017), doi:10.1061/(ASCE)HZ.2153-5515.0000373.
  9. Y.S. Shim, Y.K. Kim, S.H. Kong, S.-W. Rhee, W.K. Lee, The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash, Waste Manage., 23 (2003) 851–857.
  10. F.R. Chaspoul, M.F. Le Droguene, G. Barban, J.C. Rose, P.M. Gallice, A role for adsorption in lead leachability from MSWI bottom ASH, Waste Manage., 28 (2008) 1324–1330.
  11. Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC. 2005.
  12. C.Y. Lin, D.H. Yang, Removal of pollutants from wastewater by coal bottom ash, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 37 (2002) 1509–1522.
  13. Y. Wang, D. Ren, F. Zhao, Comparative leaching experiments for trace elements in raw coal, fly ash and bottom ash, Int. J. Coal Geol., 40(2–3) (1999) 103–108.
  14. Y.B. Acar, R.J. Gale, Electrokinetic remediation: basics and technology status, J. Hazard. Mater., 40 (1995) 117–137.
  15. M.V. Mier, R.L. Callejas, R. Gehr, B.E.J. Cisneros, P.J.J. Alvarez, Heavy metal removal with Mexican clinoptilolite: multi-component ionic exchange, Water Res., 35 (2001) 373–378.
  16. G.N. Turan, O.N. Ergun, Removal of Cu(II) from leachate using natural zeolite as a landfill linear material, J. Hazard. Mater., 167 (2009) 696–700.
  17. L. Lei Cheng, Z. Zhigang, Utilization of shale-clay mixtures as a landfill liner material to retain heavy metals, Mater. Design, 114 (2017) 73–82.
  18. J. Yao, Z. Qiu, Q. Kong, L. Chen, H. Zhu, Y. Long, Migration of Cu, Zn and Cr through municipal solid waste incinerator bottom ash layer in the simulated landfill, Ecol. Eng., 102 (2017) 577–582.
  19. E. Otal, L.F. Vilches, N. Moreno, X. Querol, J. Vale, C. Fernández-Pereira, Application of zeolitised coal fly ashes to the depuration of liquid wastes, Fuel, 84(11) (2005) 1440–1446.
  20. A. Kaya, S. Durukan, Utilization of bentonite-embedded zeolite as clay liner, Appl. Clay Sci., 25 (2004) 83–91.