References

  1. L.M. Adleman, Molecular computation of solution to combinatorial problems, Science, 266 (1994) 1021–1024.
  2. R.J. Lipton, DNA solution of HARD computational problems, Science, 268 (1995) 542–545.
  3. S. Roweis, E. Winfree, R. Burgoyne, N.V Chelyapov, M.F. Goodman, P.W.K. Rothemund, L.M. Adleman, A sticker based model for DNA computation, J. Comput. Biol., 5(4) (1998) 615– 629
  4. Q. Ouyang, P.D. Kaplan, S. Liu, A. Libchaber, DNA solution of the maximal clique problem, Science, 278 (1997) 446–449.
  5. E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Design and self assembly of two dimensional DNA crystals, Nature, 394 (1998) 539–544.
  6. J.F. Ren, Y.Z. Zhang, G. Sun, The np-hardness of minimizing the total late work on an unbounded batch machine, Asia Pac. J. Oper. Res., 26(3) (2009) 351–363.
  7. D.M. Xiao, W.X. Li, Z.Z. Zhang, L. He, Solving maximum cut problems in the Adleman-Lipton model, BioSystems, 82 (2005) 203–207.
  8. W.X. Li, D.M. Xiao, L. He, DNA ternary addition, Appl. Math. Comput., 182 (2006) 977–986.
  9. D.M. Xiao, W.X. Li, J. Yu, X.D. Zhang, Z.Z. Zhang, L. He, Procedures for a dynamical system on {0,1}n with DNA molecules, BioSystems, 84 (2006) 207–216.
  10. C. Wang, J. Zhou, X. Xu, Saddle points theory of two classes of augmented Lagrangians and its applications to generalized semi-infinite programming, Appl. Math Opt., 59(3) (2009) 413–434.
  11. Z. Wang, D. Huang, H. Meng, C. Tang, A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation, BioSystems, 114(1) (2013) 1–7.
  12. M.Y. Guo, W.L. Chang, M. Ho, J. Lu, J.N. Cao, Is optimal solution of every NP-complete or NP-hard problem determined from its characteristic for DNA-based computing, BioSystems, 80 (2005) 71–82.
  13. H. Zhang, Y. Wang, A new CQ method for solving split feasibility problem, Front Math China, 5(1) (2010) 37–46.
  14. L. Qi, X. Tong, Y. Wang, Computing power system parameters to maximize the small signal stability margin based on minmax models, Optim Eng., 10(4) (2009) 465–476.
  15. Z.C. Wang, J. Tan, D.M. Huang, Y.C. Ren, Z.W. Ji, A biological algorithm to solve the assignment problem based on DNA molecules computation, Appl. Math Comput., 244 (2014) 183–190.
  16. Z. Wang, D. Huang, J. Tan, T. Liu, K. Zhao, L. Li, A parallel algorithm for solving the n-queens problem based on inspired computational model, BioSystems, 131(5) (2015) 22–29.
  17. X.C. Liu, X.F. Yang, S.L. Li, Y. Ding, Solving the minimum bisection problem using a biologically inspired computational model, Theor. Comput. Sci., 411 (2010) 888–896.
  18. Z. Wang, J. Pu, L. Cao, J. Tan, A parallel biological optimization algorithm to solve the unbalanced assignment problem based on DNA molecular computing, Int. J. Mol Sci., 16(10) (2015) 25338–25352.
  19. G. Wang, X.X. Huang, J. Zhang, Levitin-Polyak well-posedness in generalized equilibrium problems with functional constraints, Pac. J. Optim., 6(2) (2010) 441–453.
  20. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness., W. H. Freeman and Company, 1979.
  21. M. Yamamura, Y. Hiroto, T. Matoba, Solutions of shortest path problems by concentration control, Lecture Notes Comp. Sci., 2340 (2002) 231–240.
  22. R.S. Braich, C. Johnson, P.W.K. Rothemund, D. Hwang, N. Chelyapov, L.M. Adleman, Solution of a satisfiability problem on a gel-based DNA computer, in: Proceedings of the Sixth International Conference on DNA Computation (DNA 2000), Lecture Notes Comp. Sci., 2054 (2001) 27–42.
  23. H. Chen, Y. Wang, A Family of higher-order convergent iterative methods for computing the Moore–Penrose inverse, Appl. Math Comput., 218(8) (2011) 4012–4016.
  24. R.B.A. Bakar, J. Watada, W. Pedrycz, DNA approach to solve clustering problem based on a mutual order, BioSystems, 91 (2008) 1–12.
  25. Z. Wang, Z. Ji, Z. Su, X. Wang, K. Zhao, Solving the maximal matching problem with DNA molecules in Adleman-Lipton model, Int. J. Biomath., 9(2) (2016) 1650019.
  26. Y. Ni, Fuzzy minimum weight edge covering problem, Appl. Math Model, 32(7) (2008) 1327–1337.
  27. H. Fernau, F.V. Fomin, G. Philip, On the parameterized complexity of vertex cover and edge cover with connectivity constraints, Theor. Comput. Sci., 565 (2015) 1–15.
  28. Z. Wang, Z. Ji, X. Wang, A new parallel DNA algorithm to solve the task scheduling problem based on inspired computational model, BioSystems, 162 (2017) 59–65.
  29. F.V. Fomin, D. Lokshtanov, V. Raman, S. Saurabh, Subexponential algorithms for partial cover problems, Inform. Process Lett., 111(16) (2011) 814–818.
  30. M. Xiao, T. Kloks, S.H. Poon, New parameterized algorithms for the edge dominating set problem, Theor. Comput. Sci., 511 (Complete) (2013) 147–158.
  31. C.P. Wei, P. Wang, Y.Z. Zhang, Entropy similarity measure of interval-valued in tuition is tic fuzzy sets and their applications, Inform Sciences, 181(19) (2011) 4273–4286.
  32. J. Chen, L. Kou, X. Cui, An approximation algorithm for the minimum vertex cover problem, Procedia Engineering, 137 (2016) 180–185.
  33. B. Liu, B. Qu, N. Zheng, A successive projection algorithm for solving the multiple-sets split feasibility problem, Numer. Func. Anal Opt., 35(11) (2014) 1459–1466.
  34. N. Zhao, C. Wei, Z. Xu, Sensitivity analysis of multiple criteria decision making method based on the OWA operator, Int. J. Intell. Syst., 28(11) (2013) 1124–1139.
  35. Q. Liu, A. Liu, Block SOR methods for the solution of indefinite least squares problems, Calcolo., 51(3) (2014) 367–379.
  36. J. Ren, G. Sun, Y. Zhang, The supplying chain scheduling with outsourcing and transportation, Asia Pac. J. Oper. Res., 34(2) (2017) 1750009.
  37. B. Wang, A. Iserles, X. Wu, Arbitrary-order trigonometric fourier collocation methods for multi-frequency oscillatory systems, Found Comput Math., 16(1) (2016) 151–181.
  38. C. Miao, Y. Zhang, Z. Cao, Bounded parallel-batch scheduling on single and multi machines for deteriorating jobs, Inform. Process Lett., 111(16) (2011) 798–803.
  39. G. Wang, Levitin–Polyak Well-Posedness for optimization problems with generalized equilibrium constraints, J. Optimiz Theory App., 153(1) (2012) 27–41.
  40. W. Liu, C. Wang, A smoothing Levenberg–Marquardt method for generalized semi-infinite programming, Comput. Appl. Math, 32(1) (2013) 89–105.
  41. Z. Ji, Z. Wang, X. Bao, X. Wang, T. Wu, Research on water resources optimal scheduling problem based on parallel biological computing, Desal. Water Treat., 111 (2018) 88–93.