References
- Y. Oren, Capacitive deionization (CDI) for desalination and
water treatment—past, present and future (a review), Desalination,
228 (2008) 10–29.
- Y. Zhao, X.M. Hu, B.H. Jiang, L. Li, Optimization of the operational
parameters for desalination with response surface
methodology during a capacitive deionization process, Desalination,
336 (2014) 64–71.
- M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V.
Presser, Water desalination via capacitive deionization: what
is it and what can we expect from it? Energy Environ. Sci., 8
(2015) 2296–2319.
- Y. Liu, C.Y. Nie, X.J. Liu, X.T. Xu, Z. Sun, L.k. Pan, Review on
carbon-based composite materials for capacitive deionization,
RSC Adv., 5 (2015) 15205–15225.
- H. Yoon, J. Lee, S. Kim, J. Yoon, Hybrid capacitive deionization
with Ag coated carbon composite electrode, Desalination, 422
(2017) 42–48.
- W.S. Cai, J.B. Yan, T. Hussin, J.Y. Liu, Nafion-AC-based asymmetric
capacitive deionization, Electrochim. Acta, 225 (2018)
407–415.
- J. Ma, L. Wang, F. Yu, Water-enhanced performance in capacitive
deionization for desalination based on graphene gel as
electrode material, Electrochim. Acta, 263 (2018) 40–46.
- C.J. Feng, C.C. Tsai, C.Y. Ma, C.P. Yu, C.H. Hou, Integrating
cost-effective microbial fuel cells and energy-efficient capacitive
deionization for advanced domestic wastewater treatment,
Chem. Eng. J., 330 (2017) 1–10.
- L.L. Yuan, X.F. Yang, P. Liang, L. Wang, Capacitive deionization
coupled with microbial fuel cells to desalinate low-concentration salt water, Bioresour. Technol., 110 (2012) 735–738.
- A. Hassanvand, G.Q. Chen, P.A. Webley, S.E. Kentish, A comparison
of multicomponent electro sorption in capacitive
deionization and membrane capacitive deionization, Water
Res., 131 (2018) 100–109.
- K.S. Lee, Y.H. Cho, K.Y. Choo, S.C. Yoon, M.H. Han, D.K. Kim,
Membrane-spacer assembly for flow-electrode capacitive
deionization, Appl. Surf Sci., 433 (2018) 437–442.
- S.C. Yang, H.K. Kim, S. Jeon, J.Y. Choi, J.G. Yeo, H.R. Park, J. Jin,
D.K. Kim, Analysis of the desalting performance of flow-electrode
capacitive deionization under short-circuited closed
cycle operation, Desalination, 423 (2017) 110–121.
- P. Nativ, O. Lahav, Y. Gendel, Separation of divalent and
monovalent ions using flow-electrode capacitive deionization
with nanofiltration membranes, Desalination, 425 (2018)
123–129.
- A.A. Marc, C.L. Ana, P. Jesus, Capacitive deionization as an
electrochemical means of saving energy and delivering clean
water. Comparison to present desalination practices: Will it
compete? Electrochim. Acta, 55 (2010) 3845–3856.
- U. Emekli, C. Alan, Effect of additives and pulse plating on
copper nucleation onto Ru, Electrochim. Acta, 54 (2009) 1177–1183.
- F.F. Xia, J.Y. Tian, Effect of plating parameters on the properties
of pulse electro deposited Ni–TiN thin films, Ceram. Int., 42
(2016) 13268–13272.
- P. Sistat, P. Huguet, B. Ruiz, G. Pourcelly, Effect of pulsed electric
field on electro dialysis of a NaCl solution in sub-limiting
current regime, Electrochim. Acta, 164 (2015) 267–280.
- C.A. Nicolás, P. Gérald, L. Bazinet, Impact of pulsed electric
field on electro dialysis process performance and membrane
fouling during consecutive demineralization of a model salt
solution containing a high magnesium/calcium ratio, J. Colloid
Interface Sci., 361 (2011) 79.
- C.A. Nicolás, P. Gérald, L. Bazinet, Water splitting proton-barriers
for mineral membrane fouling control and their optimization
by accurate pulsed modes of electro dialysis, J. Colloid
Interface Sci., 447 (2013) 433–441.
- K. Sharma, R.T. Mayes, J. Kiggans Jr, S. Yiacoumi, H.Z. Bilheux,
L.M.H. Walker, D. DePaoli, S. Dai, C. Tsouris, Enhancement of
electro sorption rates using low-amplitude, high-frequency,
pulsed electrical potential, Sep. Purif. Technol., 129 (2014) 18–24.
- J.W. Feng, H.M. Ding, Y.Q. Ma, Water desalination by electrical
resonance inside carbon nanotube, Phys. Chem. Chem. Phys.,
18 (2016) 28290–28296.
- G.W. Sun, D.H. Long, X.J. Liu, W.M. Qiao, Asymmetric capacitance
response from the chemical characteristics of activated
carbons in KOH electrolyte, J. Electroanal. Chem., 659 (2011)
161–167.
- S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, J. Comput. Phys., 117 (1995) 1–19.
- P. Bjelkmar, P. Larsson, M.A. Cuendet, B. Hess, E. Lindahl,
Implementation of the CHARMM force field in GROMACS:
analysis of protein stability effects from correction maps, virtual
interaction sites, and water models, J. Chem. Theory Comput.,
6 (2010) 459–446.
- W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey
M.L. Klein, Comparison of simple potential functions for simulating
liquid water, J. Chem. Phys., 79 (1983) 926–935.
- K.F. Rinne, S. Gekle, D.J. Bonthuis, R.R. Netz, Nanoscale
pumping of water by AC electric fields, Nano Lett., 12 (2012)
1780–1783.
- R.W. Hockney, J.W. Eastwood, Computer Simulation Using
Particles, Adam Hilger Ltd, Bristol, 1981.
- C.P. Huang, Solar hydrogen production via pulse electrolysis
of aqueous ammonium sulfite solution, Sol Energy., 91 (2013)
394–401.