References

  1. M. Filella, Fresh waters: which NOM matters, Environ. Chem. Lett., 7 (2009) 21–35.
  2. A. Naghi zadeh, H. Shahabi, F. Ghasemi, A. Zarei, Synthesis of walnut shell modified with titanium dioxide and zinc oxide nanoparticles for efficient removal of humic acid from aqueous solutions, J. Water Health, 14(6) (2016) 989–997.
  3. N.D.J. Graham, Removal of humic substances by oxidation/biofiltration processes-a review, Water Sci. Tech., 40 (1999) 141–148.
  4. A. Rubia, M. Rodriguez, D. Parts, pH, ionic strength and flow velocity effects on the NOM filtration with TiO2 membranes, Separ. Purif. Technol., 52 (2006) 325–331.
  5. D. Barlokova, J. Ilavsky, O. Kapusta Removal of humic substances in water by granular activated carbon. Environ Engine 10th International Conference Vilnius Gediminas Technical University Lithuania, 27–28 (2017) 1–8.
  6. A. Naghizadeh, Regeneration of carbon nanotubes exhausted with humic acid using electro Fenton technol, Arabian J. Sci. Eng., 41 (2016) 155–161.
  7. K.Y.A. Lin, H.A. Chang, Efficient adsorptive removal of humic acid from water using zeolitic imidazole framework-8 (ZIF-8), Water Air Soil Pollut., 226 (2015) 2280–2287.
  8. M. Schnitzer, S.U. Khan, M. Dekker, Humic Substances in the Environment. 1972.
  9. J. Leenheer, J.P. Croue, Characterizing aquatic dissolved organic matter, Environ. Sci. Technol., 37 (2003) 18–26.
  10. K.J. Lee, J. Miyawaki, N. Shiratori, S.H. Yoon, J. Jang, Toward an effective adsorbent for polar pollutants: Formaldehyde adsorption by activated carbon, J. Hazard Mater., 260 (2013) 82–88.
  11. M. Salman, B. El-Eswed, F. Khalili, Adsorption of humic acid on bentonite, Appl. Clay Sci., 38 (2007) 51–56.
  12. B. Eikebrokk, R. Vogt, H. Liltved, NOM increase in Northern European source waters: discussion of possible causes and impacts on coagulation/contact filtration processes, Water Sci. Technol.: Water Supply, 4 (2004) 47–54.
  13. J.C. Crittenden, R.R. Trussel, D.W. Hand, K.J. Howe, G. Tchobanoglous, MWH’s Water Treatment: Principles and Design. 2nd ed. USA: John Wiley and Sons Inc; 2005.
  14. G.C. Budd, A.F. Hess, H. Shorney-Darby, J.J. Neemann, C.M. Spencer, J.D. Bellamy, P.H. Hargette, Coagulation applications for new treatment goals, J. AWWA, 96 (2004) 102–113.
  15. C. Lu, Y.L. Chung, Adsorption of trihalomethanes from water with carbon nano tubes, Water Res., 39 (2005) 1183–1189.
  16. R.S. Pirkle, J.D. Jack, P.A. Bukaveckas, Reduction in trihalomethane formation potential through air oxidation, Environ. Informatics Archives, 4 (2006) 273–279.
  17. Z.Y. Zhao, D.J. Gu, H.B. Li, X.Y. Li, K. Leung, Disinfection characteristics of the dissolved organic fractions at several stages of a conventional drinking water treatment plant in South China, J. Hazard. Mater., 172 (2009) 1093–1099.
  18. S. Bousba, N. Bougdah, N. Messikh, P. Magri, Adsorption removal of humic acid from water using a modified Algerian bentonite, Phys. Chem. Res., 6 (2018) 613–625.
  19. J. Wang, Y. Zhou, A. Li, L. Xu, Adsorption of humic acid by bi-functional resin JN-10 and the effect of alkali-earth metal ions on the adsorption, J. Hazard. Mater., 176 (2010) 1018–1026.
  20. C. Kannan, T. Sundaram, T. Palvannan, Environmentally stable adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution, J. Hazard. Mater., 157 (2008) 137–145.
  21. Q. Tao, Z. Xu, J. Wang, F. Liu, H. Wan, S. Zheng, Adsorption of humic acid to amino propyl functionalized SBA15, Micropor. Mesopor. Mater., 131 (2010) 177185.
  22. M.H. Dehghani, M. Mohammadi, M.A. Mohammadi, A.H. Mahvi, K. Yetilmezsoy, A. Bhatnagar, B. Heibati, G. McKay, Equilibrium and kinetic studies of trihalomethanes adsorption onto multi-walled carbon nano tubes, Water Air Soil Pollut., (2016) 227–332 .
  23. G. Asgari, B. Roshanib, G. Ghanizadeh, The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone, J. Hazard Mater., 218 (2012) 123132.
  24. M. Masoudzadeh, N. Karachi, Enhanced removal of humic acids (HAs) from aqueous solutions using MWCNTs modified by N-(3-nitro-benzylidene)-N-trimethoxysilylpropyl-ethane-1,2-diamine on equilibrium, thermodynamic and kinetics, Phys. Chem. Res., 14 (2018) 259270.
  25. E.M. Peña-Méndez, J. Havel, JiříPatočka, Humic substances ñ compounds of still unknown structure, applications in agriculture, industry, environ, and biomedicine, J. Appl. Biomed., 3 (2005) 13–24.
  26. S. Abedi, H. Mousavi, Z. Asghari, Investigation of heavy metal ions adsorption by magnetically modified aloe vera leaves ash based on equilibrium, kinetic and thermodynamic studies, Desal. Water Treat., 57 (2016) 13747–13759.
  27. S. Wang, W.X. Gong, X.W. Liu, B.Y. Gao, Q. Yue, D.H. Zhang, Removal of fulvic acids from aqueous solution via surfactant modified zeolite, J. Chem. Res. Chinese, 22 (2006) 566570.
  28. W. Wan, M. Hanafiah, S.S. Yong, Adsorption of humic acid from aqueous solutions on cross linked chitosan epichlorohydrin bead: Kinetics and isotherm studies, Colloids Surf. B Bio interfaces, 65 (2008) 1824.
  29. M. Asadollahzadeh, H. Tavakoli, M. Torab-Mostaedi, G. Hosseini, A. Hemmati, Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples, Talanta, 123 (2014) 25–31.
  30. E. Derakhshani, A. Naghizadeh, Optimization of humic acid removal by adsorption onto bentonite and montmorillonite nanoparticles, J. Mol. Liq., 259 (2018) 76–81.
  31. M. Jimenez-Reyes, M. Solache-Rios, Sorption behavior of fluoride ions from aqueous solutions by hydroxyapatite, J. Hazard Mater., 180 (2010) 297–303.
  32. S. Lagergren, Adsorption of Soluble Substances, Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1–39.
  33. Y. Ho, J. Ng, G. McKay, Kinetics of pollutant sorption by biosorbents, Sep. Purif. Methods, 29 (2000) 189–232.
  34. Y.-S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  35. M. Toor, B. Jin, Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye, J. Chem. Eng., 187 (2012) 79–88.
  36. E.I. El-Shafey, Behaviour of reduction-sorption of chromium (VI) from an aqueous solution on a modified sorbent from rice husk. Water Air Soil Pollut., 163 (2005) 81–102.
  37. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  38. O. Yesilada, D. Asma, S. Cing, Decolorization of textile dyes by fungal pellets, Process Biochem., 38 (2003) 933–938.
  39. O. Celebi, C. Uzum, T. Shahwan, H.N. Erten, A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron, J. Hazard. Mater., 148 (2007) 761–767.
  40. M. Temkin, V. Levich, Adsorption equilibrium on hetrogeneous surfaces, J. Phys. Chem., 20 (1964) 1441.
  41. D. Doulia, C. Leodopoulos, K. Gimouhopoulos, F. Rigas, Adsorption of humic acid on acid-activated Greek bentonite, J. Colloid Interface Sci., 340 (2009) 131–141.
  42. N.D. Hutson, R.T. Yang, Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation, Adsorption, 3 (1997) 189–195.
  43. Y.S. Ho, Citation review of Lagergren kinetic rate equation on adsorption reaction, Scientometrics, 59 (2004) 171–177.
  44. M.A. Zulfikar, S. Afrita, D. Wahyuningrum, M. Ledyastuti, Preparation of Fe3O4-chitosan hybrid nano-particles used for humic acid adsorption, Environ. Nanotechnol. Monit. Manag., 6 (2016) 64–75.
  45. M. Wang, L. Liao, X. Zhang, Z. Li, Adsorption of low concentration humic acid from water by palygorskite, Appl. Clay Sci., 67 (2011) 164–168.