References

  1. T.D.D. Oliveira, W.S. Martini, M.D.R. Santos, M.A.C. Matos, L.L.D. Rocha, Caffeine oxidation in water by Fenton and Fenton-like processes: effects of inorganic anions and ecotoxicological evaluation on aquatic organisms, J. Brazil. Chem. Soc., 26 (2015) 178–184.
  2. J. De Laat, T.G. Le, Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process, Appl. Catal. B: Environ., 66 (2006) 137–146.
  3. M. Heiranian, A.B. Farimani, N.R. Aluru, Water desalination with a single-layer MoS2 nanopore, Nature Commun., 6 (2015) 8616.
  4. J. Dron, A. Dodi, Comparison of adsorption equilibrium models for the study of Cl, NO3 and SO42− removal from aqueous solutions by an anion exchange resin, J. Hazard. Mater., 190 (2011) 300–307.
  5. M.C. Zafra, P. Lavela, G. Rasines, C. Macías, J.L. Tirado, Effect of the resorcinol/catalyst ratio in the capacitive performance of carbon xerogels with potential use in sodium chloride removal from saline water, J. Solid State Electrochem., 18 (2014) 2847–2856.
  6. J. Hua, L. Lu, Chloride removal from wastewater by thermally treated hydrotalcite, Chinese J. Geochem., 25 (2006) 255–256.
  7. T. Kameda, T. Yoshioka, T. Hoshi, M. Uchida, A. Okuwaki, The removal of chloride from solutions with various cations using magnesium–aluminum oxide, Sep. Purif. Technol., 42 (2005) 25–29.
  8. F.L. Theiss, S.J. Couperthwaite, G.A. Ayoko, R.L. Frost, A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides, J. Colloid Interface Sci., 417 (2014) 356–368.
  9. H. Li, Y. Chen, J. Long, D. Jiang, J. Liu, S. Li, J. Qi, P. Zhang, J. Wang, J. Gong, Q. Wu, D. Chen, Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins, J. Hazard. Mater., 333 (2017) 179–185.
  10. W. Liu, L. Lü, Y. Lu, X. Hu, B. Liang, Removal of chloride from simulated acidic wastewater in the zinc production, Chinese J. Chem. Eng., (2018).
  11. E. Iakovleva, E. Mäkilä, J. Salonen, M. Sitarz, M. Sillanpää, Industrial products and wastes as adsorbents for sulphate and chloride removal from synthetic alkaline solution and mine process water, Chem. Eng. J., 259 (2015) 364–371.
  12. R. Pode, Potential applications of rice husk ash waste from rice husk biomass power plant, Renew. Sustain. Energy Rev., 53 (2016) 1468–1485.
  13. J. Prasara-A, S.H. Gheewala, Sustainable utilization of rice husk ash from power plants: A review, J. Cleaner Prod., 167 (2017) 1020–1028.
  14. S. Kumar, P. Sangwan, R.M.V. Dhankhar, S. Bidra, Utilization of rice husk and their ash: A review, Res. J. Chem. Env. Sci., 1 (2013), 126–129.
  15. N.T. Thanh, A mine-bearing activated rice husk ash for CO2 and H2S gas removals from biogas, KKU Eng. J., 43 (2016) 396–398.
  16. D.M. Ibrahim, S.A. El-Hemaly, F.M. Abdel-Kerim, Study of rice-husk ash silica by infrared spectroscopy, Thermochim. Acta, 37 (1980) 307–314.
  17. M.H. Zhang, R. Lastra, V.M. Malhotra, Rice-husk ash paste and concrete: Some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste, Cem. Concr. Res., 26 (1996) 963–977.
  18. S. Nath, S. Kumar Ghosh, S. Praharaj, S. Panigrahi, S. Basu, T. Pal, Silver organosol: synthesis, characterisation and localised surface plasmon resonance study, New J. Chem., 29 (2005) 1527–1534.
  19. Y. Meng, A sustainable approach to fabricating Ag nanoparticles/PVA hybrid nanofiber and its catalytic activity, Nanomaterials, 5 (2015) 1124.
  20. T.-T. Nguyen, V.T.T. Ho, C.-J. Pan, J.-Y. Liu, H.-L. Chou, J. Rick, W.-N. Su, B.-J. Hwang, Synthesis of Ti0.7Mo0.3O2 supported-Pt nanodendrites and their catalytic activity and stability for oxygen reduction reaction, Appl. Catal., B, 154–155 (2014) 183–189.
  21. M.-C. Tsai, T.-T. Nguyen, N.G. Akalework, C.-J. Pan, J. Rick, Y.-F. Liao, W.-N. Su, B.-J. Hwang, Interplay between molybdenum dopant and oxygen vacancies in a TiO2 support enhances the oxygen reduction reaction, ACS Catalysis, 6 (2016) 6551–6559.
  22. J. Wang, C. An, M. Zhang, C. Qin, X. Ming, Q. Zhang, Photochemical conversion of AgCl nanocubes to hybrid AgCl–Ag nanoparticles with high activity and long-term stability towards photocatalytic degradation of organic dyes, Canad. J. Chem., 90 (2012) 858–864.
  23. C.G. Vayenas, S. Brosda, C. Pliangos, The double-layer approach to promotion, electrocatalysis, electrochemical promotion, and metal–support interactions, J. Catal., 216 (2003) 487–504.
  24. T. Ioannides, X.E. Verykios, Charge transfer in metal catalysts supported on doped TiO2: A theoretical approach based on metal–semiconductor contact theory, J. Catal., 161 (1996) 560–569.
  25. C.-J. Pan, M.-C. Tsai, W.-N. Su, J. Rick, N.G. Akalework, A.K. Agegnehu, S.-Y. Cheng, B.-J. Hwang, Tuning/exploiting strong metal-support interaction (SMSI) in heterogeneous catalysis, J. Taiwan Inst. Chem. E., 74 (2017) 154–186.
  26. J.K. Gaca, M. Mroz, The effect of chloride ions on alkylbenzenesulfonate degradation in the Fenton reagent, Polish J. Environ. Stud., 14 (2004) 23–27.