References
- S.S. Gill, A. Tsolakis, K.D. Dearn, J. Rodríguez-Fernández,
Combustion characteristics and emissions of Fischer–Tropsch
diesel fuels in IC engines, Progr. Energy Combust. Sci., 37(4)
(2011) 503–523.
- K. Kobayashi, 2005, Forecasting Supply and Demand up to
2030. International Energy Agency.
- M.C. Boufadel, A.M. Bobo, Y. Xia, Feasibility of deep nutrients
delivery into a Prince William Sound beach for the bioremediation
of the Exxon Valdez oil spill, Groundwater Monit.
Remed., 31(2) (2011) 80–91.
- S. Haycox, “Fetched up”: unlearned lessons from the Exxon
Valdez, J. Amer. Hist., 99(1) (2012) 219–228.
- E.L. Brannon, K. Collins, M.A. Cronin, L.L. Moulton, A.L.
Maki, K.R. Parker, Review of the Exxon Valdez oil spill effects
on pink salmon in Prince William Sound, Alaska. Rev. Fisheries
Sci., 20(1) (2012) 20–60.
- M.A. Rose, B. Hunt, Learning from engineering failures: a case
study of the deepwater horizon, Technol. Eng. Teacher, 71(5)
(2012) 5–11.
- R.S. Kurtz, Oil spill causation and the deepwater horizon
spill, Rev. Policy Res., 30(4) (2013) 366–380.
- A.C. Bejarano, J. Michel, Large-scale risk assessment of polycyclic
aromatic hydrocarbons in shoreline sediments from Saudi
Arabia: environmental legacy after twelve years of the Gulf
war oil spill, Environ. Pollut., 158(5) (2010) 1561–1569.
- GESAMP, Estimates of oil entering the marine environment
from sea-based activities (IMO FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP Joint Group of Experts on the Scientific
Aspects of Marine Environmental Protection), in: Reports
and Studies No. 75, GESAMP, London, 2007.
- OTA, Bioremediation of Marine Oil Spills: An Analysis of Oil
Spill Response Technologies (OTA-BP-O-70), Office of Technology
Assessment, Washington, DC, 1991.
- API, A Guide for Spill Response Planning in Marine Environments,
American Petroleum Institute, Seattle, Washington,
2001.
- E. Xhelilaj, S. Sinanaj, The behaviour and effects of oil pollution
into marine environment and oceans, Scient. J. Maritime
Res., 24(1) (2010).
- R. Tecon, S. Beggah, K. Czechowska, V. Sentchilo, P.M. Chronopoulou,
T.J. McGenity, J.R. van der Meer, Development of a
multistrain bacterial bioreporter platform for the monitoring
of hydrocarbon contaminants in marine environments, Environ.
Sci. Technol., 44(3) (2009) 1049–1055.
- Y. Xia, M.C. Boufadel, Beach geomorphic factors for the persistence
of subsurface oil from the Exxon Valdez spill in
Alaska, Environ. Monit. Assess., 183(1–4) (2011) 5–21.
- G. Wilson, Deepwater horizon and the law of the sea: was the
cure worse than the disease, BC Envtl. Aff. L. Rev., 41 (2014) 63.
- O.A.T. Ebuehi, I.B. Abibo, P.D. Shekwolo, K.I. Sigismund, A.
Adoki, I.C. Okoro, Remediation of crude oil contaminated soil
by enhanced natural attenuation technique, Environ. Eng., 9
(2005) 103–106.
- M.J. Kennish, 2001. Practical Handbook of Marine Science, 3rd
ed. CRC Press Inc., Boca Raton, FL.
- L. Huang, T. Ma, D. Li, F.L. Liang, R.L. Liu, G.Q. Li, Optimization
of nutrient component for diesel oil degradation by
Rhodococcuserythropolis, Marine Pollut. Bul., 56(10)
(2008) 1714–1718.
- F. Rigas, K. Papadopoulou, V. Dritsa, D. Doulia, Bioremediation
of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology, J.
Hazard. Mater., 140(1–2) (2007) 325–332.
- D.M. Pala, D.D.,de Carvalho, J.C. Pinto, G.L. Sant’AnnaJr, A suitable
model to describe bioremediation of a petroleum-contaminated
soil, Int. Biodeterior. Biodegrad., 58(3–4) (2006) 254–260.
- M. Ahmadi, F. Vahabzadeh, B. Bonakdarpour, E. Mofarrah, M.
Mehranian, Application of the central composite design and
response surface methodology to the advanced treatment of
olive oil processing wastewater using Fenton’s peroxidation, J.
Hazard. Mater., 123(1–3) (2005) 187–195.
- M. Ishiguro, T. Makino, Y. Hattori, Sulfate adsorption and surface
precipitation on a volcanic ash soil (allophanicandisol), J.
Colloid Interface Sci., 300(2) (2006) 504–510.
- Leca Co, 2006. What is Leca? Leca Co. Iran. Available from: http://www.Leca.ir/index (cited).
- F.M. Tehrani, 1998. Rāhnamā-ye Jāme‘-e Līkā. Leca Handbook.
Leca Co., Tehran. 368+19 pp. (in Persian). http://leca.ir/wp-content/uploads/maghalat/LECA-Handbook.pdf
- M.A. Nkansah, A.A. Christy, T. Barth, G.W. Francis, The use
of lightweight expanded clay aggregate (LECA) as sorbent for
PAHs removal from water, J. Hazard. Mater., 217 (2012) 360–365.
- Claytek, LECA, http://www.claytek.co.uk/leca home.htm,
2011 (accessed 25.03.11).
- Future garden, Lecastone http://futuregarden.com/propagation/medialecastone.html, 2011 (accessed 24.03.11).
- Laterlite, Light weight concrete made with leca structural, http://www.laterlite.compagina.aspx?idmenu=58&idlingua=eng&idpadre=63&livello=3, 2011 (accessed 24.03.11).
- Shanghai Tiandouxin Industrial Development (STID) Co.,
Ltd., http://tdxsy.com/english/news info.asp?nid=3, 2010
(accessed 17.02.12.)
- F.M. Tehrani, M. Azimi, ,, A.Namadmalian, 2007, Rāhnamā-ye
Jāme‘-e LīkādarKeshāvarzīvaFazā-ye Sabz. Leca Handbook
in Agriculture and Landscaping. Omīdān, Tehran. 40 pp. (in
Persian). http://leca.ir/wp-content/uploads/maghalat/Aggriculture%20book%2088.pdf.
- M. Malakootian, J. Nouri, H. Hossaini, Removal of heavy
metals from paint industry’s wastewater using Leca as an
available adsorbent, Int. J. Environ. Sci. Technol., 6(2) (2009)
183–190.
- E.M. Kalhori, K. Yetilmezsoy, N. Uygur, M. Zarrabi, R.M.A.
Shmeis, Modeling of adsorption of toxic chromium on natural
and surface modified lightweight expanded clay aggregate
(LECA), Appl. Surf. Sci., 287 (2013) 428–442.
- O. Ozdemir, B. Armagan, M. Turan, M.S. Celik, Comparison
of the adsorption characteristics of azo-reactive dyes on mezoporous
minerals, Dyes Pigments, 62(1) (2004) 49–60.
- Dansk Leca A/S, http://www.gpnm.org/e/uploads/131-b810984952.pdf (accessed 20.02.12).
- ASTM, Philadelphia, PA, USA, 15.01 (2002).
- USEPA - Method 1664, Revision B: n-Hexane Extractable
Material (HEM; Oil and Grease) and Silica Gel Treated n-Hexane
Extractable Material (SGT-HEM; Non-polar Material) by
Extraction and Gravimetry, https://www.epa.gov/sites/production/files/2015-08/documents/method_1664b_2010.pdf.
- B. Doshi, M. Sillanpää, S. Kalliola, A review of bio-based materials
for oil spill treatment, Water Res., 135 (2018) 262–277.
- L. Zeng, A method for preparing silica-containing iron (III)
oxide adsorbents for arsenic removal, Water Res., 37(18) (2003)
4351–4358.
- R. Shokoohi, S. Azizi, A. Poormohammadi, F. Panahi, Study
of pentachlorophenol biosorption by phanerochaete Chrysosporium biomass: kinetics and adsorption isotherms modeling,
Der Pharmacia Lettre, 7 (2015) 59–65.
- R.H. Krishna, A.V.V.S. Swamy, Investigation on the effect of
particle size and adsorption kinetics to removal of hexavalent
chromium from the aqueous solutions using low cost sorbent,
Eur. Chem. Bull., 1(7) (2012) 258–262.
- Z.C. Zeledon-Toruno, C. Lao-Luque, F.X.C. de las Heras, M.
Sole-Sardans, Removal of PAHs from water using an immature
coal (leonardite), Chemosphere, 67(3) (2007) 505–512.
- R. Crisafully, M.A.L. Milhome, R.M. Cavalcante, E.R. Silveira,
D. De Keukeleire, R.F. Nascimento, Removal of some polycyclic
aromatic hydrocarbons from petrochemical wastewater
using low-cost adsorbents of natural origin, Bioresour. Technol.,
99(10) (2008) 4515–4519.
- A. Bazargan, J. Tan, C.W. Hui, G. McKay, Utilization of rice
husks for the production of oil sorbent materials, Cellulose,
21(3) (2014) 1679–1688.
- G.A. El-Din, A.A. Amer, G. Malsh, M. Hussein, Study on the
use of banana peels for oil spill removal, Alexandria Eng. J.,
57(3) (2018) 2061–2068.
- L. Vlaev, P. Petkov, A. Dimitrov, S. Genieva, Cleanup of water
polluted with crude oil or diesel fuel using rice husks ash, J.
Taiwan Inst. Chem. Eng., 42(6) (2011) 957–964.
- V. Rajakovic, G. Aleksic, M. Radetic, L. Rajakovic, Efficiency of
oil removal from real wastewater with different sorbent materials,
J. Hazard. Mater., 143 (2007) 494–499.
- D. Angelova, I. Uzunov, S. Uzunova, A. Gigova, L. Minchev,
Kinetics of oil and oil products adsorption by carbonized rice
husks, Chem. Eng. J., 172 (2011) 306–311.
- S.M. Sidik, A.A. Jalil, S. Triwahyono, S.H. Adam, M.A.H.
Satar, B.H. Hameed, Modified oil palm leaves adsorbent with
enhanced hydrophobicity for crude oil removal, Chem. Eng.
J., 203 (2012) 9–18.
- A. Srinivasan, T. Viraraghavan, Removal of oil by walnut shell
media, Bioresour. Technol., 99(17) (2008) 8217–8220.
- E. Khan, W. Virojnagud, T. Ratpukdi, Use of biomass sorbents
for oil removal from gas station runoff, Chemosphere, 57(7)
(2004) 681–689.
- W. Pitakpoolsil, M. Hunsom, Adsorption of pollutants from
biodiesel wastewater using chitosan flakes, J. Taiwan Inst.
Chem. Eng., 44(6) (2013) 963–971.
- H. Moradi, S. Sharifnia, F. Rahimpour, Photocatalytic decolorization
of reactive yellow 84 from aqueous solutions using
ZnO nanoparticles supported on mineral LECA, Mater. Chem.
Phys., 158 (2015) 38–44.
- N. Guettai, H.A. Amar, Photocatalytic oxidation of methyl
orange in presence of titanium dioxide in aqueous suspension,
Part II: kinetics study, Desalination, 185 (2005) 439–448.
- S. Kaneco, N. Li, K.K. Itoh, H. Katsumata, T. Suzuki, K. Ohta,
Titanium dioxide mediated solar photocatalytic degradation
of thiram in aqueous solution: kinetics and mineralization,
Chem. Eng. J., 148 (2009) 50–56.
- M.T. Khorasani, A. Joorabloo, H. Adeli, Z. Mansoori-Moghadam,
A. Moghaddam, Design and optimization of process
parameters of polyvinyl (alcohol)/chitosan/nano zinc oxide
hydrogels as wound healing materials, Carbohydr. Polym., 207
(2019) 542–554.