References

  1. F. Elisangela, Z. Andrea, D.G. Fabio, R. de Menezes Cristiano, D.L. Regina, C.P. Artur, Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process, Int. Biodeterior. Biodegrad., 63 (2009) 280–288.
  2. R.G. Saratale, G.D. Saratale, D.C. Kalyani, J.S. Chang, S.P. Govindwar, Enhanced decolourization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR, Bioresour. Technol., 100 (2009) 2493–2500.
  3. O. Anjaneya, S.Y. Souche, M. Santoshkumar, T.B. Karegoudar, Decolourization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2, J. Hazard. Mater., 190 (2011) 351–358.
  4. O. Anjaneya, S.S. Shrishailnath, K. Guruprasad, A.S. Nayak, S.B. Mashetty, T.B. Karegoudar, Decolourization of Amaranth dye by bacterial biofilm in batch and continuous packed bed bioreactor, Int. Biodeterior. Biodegrad., 79 (2013) 64–72.
  5. R. Venugopal, L. Tollefson, F.N. Hyman, B. Timbo, R.E. Joyce, K.C. Klontz, Recalls of foods and cosmetics by the US Food and Drug Administration, J. Food Prot., 59 (1996) 876–880.
  6. M. Karkmaz, E. Puzenat, C. Guillard, J.M. Herrmann, Photocatalytic degradation of the alimentary azo dye amaranth: Mineralization of the azo group to nitrogen, Appl. Catal. B: Environ., 51 (2004) 183–194.
  7. S. Vanhulle, M. Trovaslet, E. Enaud, M. Lucas, S. Taghavi, D. Van Der Lelie, S.N. Agathos, Decolourization, cytotoxicity, and genotoxicity reduction during a combined ozonation/fungal treatment of dye-contaminated wastewater, Environ. Sci. Technol., 42 (2007) 584–589.
  8. L.C. Davies, G.J.M. Cabrita, R.A. Ferreira, C.C. Carias, J.M. Novais, S. Martins-Dias, Integrated study of the role of Phragmites australis in azo-dye treatment in a constructed wetland: From pilot to molecular scale, Ecol. Eng., 35 (2009) 961–970.
  9. D.T. Sponza, M.Işık, Reactor performances and fate of aromatic amines through decolourization of Direct Black 38 dye under anaerobic/aerobic sequentials, Process Biochem., 40 (2005) 35–44.
  10. P.C. Vandevivere, R. Bianchi, W. Verstraete, Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies, J. Chem. Technol. Biotechnol., 72 (1998) 289–302.
  11. L.C. Davies, I.S. Pedro, J.M. Novais, S. Martins-Dias, Aerobic degradation of acid orange 7 in a vertical-flow constructed wetland, Water Res., 40 (2006) 2055–2063.
  12. S.A. Ong, K. Uchiyama, D. Inadama, Y. Ishida, K. Yamagiwa, Phytoremediation of industrial effluent containing azo dye by model up-flow constructed wetland, Chin. Chem. Lett., 20 (2009) 225–228.
  13. A.K. Yadav, S. Jena, B.C. Acharya, B.K. Mishra, Removal of azo dye in innovative constructed wetlands: influence of iron scrap and sulfate reducing bacterial enrichment, Ecol. Eng., 49 (2012) 53–58.
  14. J. Vymazal, Removal of nutrients in various types of constructed wetlands, Sci. Total Environ., 380 (2007) 48–65.
  15. J. Vymazal, L. Kröpfelová, A three-stage experimental constructed wetland for treatment of domestic sewage: first 2 years of operation, Ecol. Eng., 37 (2011) 90–98.
  16. H.K. Lehl, S.A. Ong, L.N. Ho, Y.S. Wong, F. NaemahMohd Saad, Y.L. Oon, Y.S. Oon, W.E. Thung, Multiple aerobic and anaerobic baffled constructed wetlands for simultaneous nitrogen and organic compounds removal, Desal. Water Treat., 57 (2016) 29160–29167.
  17. A. Wießner, U. Kappelmeyer, P. Kuschk, M. Kästner, Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructed wetland, Water Res., 39 (2005) 248–256.
  18. S.A. Ong, K. Uchiyama, D. Inadama, Y. Ishida, K. Yamagiwa, Treatment of azo dye Acid Orange 7 containing wastewater using up-flow constructed wetland with and without supplementary aeration, Bioresour. Technol., 101 (2010) 9049–9057.
  19. Z. Fang, H.L. Song, N. Cang, X.N. Li, Performance of microbial fuel cell coupled constructed wetland system for decolourization of azo dye and bioelectricity generation, Bioresour. Technol., 144 (2013) 165–171.
  20. Z. Fang, H. Song, R. Yu, X. Li, A microbial fuel cell-coupled constructed wetland promotes degradation of azo dye decolourization products, Ecol. Eng., 94 (2016) 455–463.
  21. Standard Methods Online – Standard Methods for the Examination of Water and Wastewater. http://standardmethods.org/.
  22. S.S. Suthersan, Natural and Enhanced Remediation Systems, Acradis, Lewis Publisher, Washington DC., Weisburger, 2002.
  23. J.L. Faulwetter, V. Gagnon, C. Sundberg, F. Chazarenc, M.D. Burr, J. Brisson, A.K. Camper, O.R. Stein, Microbial processes influencing performance of treatment wetlands: a review, Ecol. Eng., 35 (2009) 987–1004.
  24. J. Nivala, M.B. Hoos, C. Cross, S. Wallace, G. Parkin, Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland, Sci. Total Environ., 380 (2007) 19–27.
  25. B.R. Glick, Phytoremediation: synergistic use of plants and bacteria to clean up the environment, Biotechnol. Adv., 21 (2003) 383–393.
  26. J. Yang, J.W. Kloepper, C.M. Ryu, Rhizosphere bacteria help plants tolerate abiotic stress, Trends Plant Sci., 14 (2009) 1–4.
  27. J. Vymazal, H. Brix, P.F. Cooper, R. Haberl, R. Perfler, J. Laber, Removal mechanisms and types of constructed wetlands, Constructed wetlands for wastewater treatment in Europe, (1998) 17–66.
  28. F.O. Topaç, E. Dindar, S. Uçaroğlu, H.S. Başkaya, Effect of a sulfonated azo dye and sulfanilic acid on nitrogen transformation processes in soil, J. Hazard. Mater., 170 (2009) 1006–1013.
  29. M. Gavril, P.V. Hodson, Chemical evidence for the mechanism of the biodecoloration of Amaranth by Trametes versicolor, World J. Microbiol. Biotechnol., 23 (2007) 103.
  30. J.M. Tiedje, Ecology of denitrification and dissimilatory nitrate reduction to ammonium, Biol. Anaerob. Microorg., 717 (1988) 179–244.
  31. H.K. Lehl, S.A. Ong, L.N. Ho, Y.S. Wong, F.N.M. Saad, Y.L. Oon, Y.S. Oon, W.E. Thung, C.Y. Yong, Decolourization and mineralization of Amaranth dye using multiple zoned aerobic and anaerobic baffled constructed wetland, Int. J Phytoremediation, 19 (2017) 725–731.
  32. A. Trujillo-Ortega, S.M. Delgadillo, V.X. Mendoza-Escamilla, M. May-Lozano, C. Barrera-Díaz, Modeling the removal of indigo dye from aqueous media in a sonoelectrochemical flow reactor, Int. J. Electrochem. Sci., 8 (2013) 3876–3887.
  33. J. Coates, Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of analytical chemistry, John Wiley & Sons Ltd, Chichester 2000. 10815–10837.
  34. S. Shabbir, M. Faheem, N. Ali, P.G. Kerr, Y. Wu, Evaluating role of immobilized periphyton in bioremediation of azo dye amaranth, Bioresour. Technol., 225 (2017) 395–401.
  35. S.A. Ong, K. Uchiyama, D. Inadama, K. Yamagiwa, Simultaneous removal of color, organic compounds and nutrients in azo dye-containing wastewater using up-flow constructed wetland, J. Hazard Mater., 165 (2009) 696–703.
  36. F.P. Van der Zee, G. Lettinga, J.A. Field, Azo dye decolourisation by anaerobic granular sludge, Chemosphere, 44 (2001). 1169–1176.
  37. L.A. Adnan, T. Hadibarata, P. Sathishkumar, M. Yusoff, A. Rahim, Biodegradation pathway of Acid Red 27 by whiterot fungus Armillaria sp. F022 and phytotoxicity evaluation, CLEAN–Soil, Air, Water, 44 (2016) 239–246.
  38. W.R. Barros, J.R. Steter, M.R. Lanza, A.J. Motheo, Degradation of amaranth dye in alkaline medium by ultrasonic cavitation coupled with electrochemical oxidation using a boron-doped diamond anode, Electrochim. Acta., 143 (2014) 180–187.