References

  1. R.W. Baker, Membrane Technology and Applications, John Wiley & Sons Ltd., England, 2004.
  2. W. Guo, H.-H. Ngo, J. Li, A mini-review on membrane fouling, Bioresour. Technol., 122 (2012) 27–34.
  3. P. Le-Clech, V. Chen, and T.A.G. Fane, Fouling in membrane bioreactors used in wastewater treatment, J. Membr. Sci., 284 (2006) 17–53.
  4. S. Judd, The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment, 2nd ed., Elsevier, Oxford, 2010.
  5. E. Brauns, E. Van Hoof, C. Huyskens, H. De Wever, On the concept of a supervisory, fuzzy set logic based, advanced filtration control in membrane bioreactors, Desal. Wat. Treat., 29 (2011) 119–127.
  6. A. Robles, M.V. Ruano, J. Ribes, J. Ferrer, Advanced control system for optimal filtration in submerged anaerobic MBRs (SAnMBRs), J. Membr. Sci., 430 (2013) 330–341.
  7. H. Choi, K. Zhang, D.D. Dionysiou, D.B. Oerther, G.A. Sorial, Effect of permeate flux and tangential flow on membrane fouling for wastewater treatment, Sep. Purif. Technol., 45 (2005) 68–78.
  8. I.-S. Chang, P.L. Clech, B. Jefferson, S. Judd, Membrane fouling in membrane bioreactors for wastewater treatment, J. Environ. Eng.-ASCE, 11 (2002) 1018–1029.
  9. S. Judd, Fouling control in submerged membrane bioreactors, Water Sci. Technol., 51 (2005) 27–34.
  10. X.Z. Gao, S.J. Ovaska, Soft computing methods in motor fault diagnosis, Appl. Soft Comput., 1 (2001) 73–81.
  11. V. Ravi, H. Kurniawan, P.N.K. Thai, P.R. Kumar, Soft computing system for bank performance prediction, Appl. Soft Comput., 8 (2008) 305–315.
  12. M. Hamachi, M. Cabassud, A. Davin, M. Mietton Peuchot, Dynamic modelling of crossflow microfiltration of bentonite suspension using recurrent neural networks, Chem. Eng. Process. Process Intensif., 38 (1999) 203–210.
  13. M.A. Razavi, A. Mortazavi, M. Mousavi, Dynamic modelling of milk ultrafiltration by artificial neural network, J. Membr. Sci., 220 (2003) 47–58.
  14. R. Soleimani, N.A. Shoushtari, B. Mirza, A. Salahi, Experimental investigation, modeling and optimization of membrane separation using artificial neural network and multi-objective optimization using genetic algorithm, Chem. Eng. Res. Des., 91 (2013) 883–903.
  15. S. Geissler, T. Wintgens, T. Melin, K. Vossenkaul, C. Kullmann, Modelling approaches for filtration processes with novel submerged capillary modules in membrane bioreactors for wastewater treatment, Desalination, 178 (2005) 125–134.
  16. M. Henze, W. Gujer, T. Mino, L. Van Loosedrecht, Activated Sludge Models ASM1, ASM2, ASM2d and ASM3, IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment, IWA Scientific and Technical Report, 2000.
  17. A. Fenu, G. Guglielmi, J. Jimenez, M. Spèrandio, D. Saroj, B. Lesjean, C. Brepols, C. Thoeye, I. Nopens, Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: a critical review with special regard to MBR specificities, Water Res., 44 (2010) 4272–4294.
  18. B. Verrecht, T. Maere, L. Benedetti, I. Nopens, S. Judd, Modelbased energy optimisation of a small-scale decentralised membrane bioreactor for urban reuse, Water Res., 44 (2010) 4047–4056.
  19. C. Duclos-Orsello, W. Li, C.-C. Ho, A three mechanism model to describe fouling of microfiltration membranes, J. Membr. Sci., 280 (2006) 856–866.
  20. J. Hermia, Constant pressure blocking filtration laws - application to power-law Non-newtonian fluids, Trans. Inst. Chem. Eng., 60 (1982) 183–187.
  21. C.-C. Ho, A.L. Zydney, A combined pore blockage and cake filtration model for protein fouling during microfiltration, J. Colloid Interface Sci., 232 (2000) 389–399.
  22. A.R. Pendashteh, A. Fakhru’l-Razi, N. Chaibakhsh, L.C. Abdullah, S.S. Madaeni, Z.Z. Abidin, Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network, J. Hazard. Mater., 192 (2011) 568–575.
  23. F. Salehi, S.M.A. Razavi, Dynamic modeling of flux and total hydraulic resistance in nanofiltration treatment of regeneration waste brine using artificial neural networks, Desal. Wat. Treat., 41 (2012) 95–104.
  24. R.H. Peiris, H. Budman, C. Moresoli, R.L. Legge, Fouling control and optimization of a drinking water membrane filtration process with real-time model parameter adaptation using fluorescence and permeate flux measurements, J. Process Control, 23 (2013) 70–77.
  25. P.J. Smith, S. Vigneswaran, H.H. Ngo, R. Ben-Aim, H. Nguyen, A new approach to backwash initiation in membrane systems, J. Membr. Sci., 278 (2006) 381–389.
  26. T. Janus, P. Paul, B. Ulanicki, Modelling and simulation of short and long term membrane filtration experiments, Desal. Wat. Treat., 8 (2009) 37–47.
  27. C.M. Chew, M.K. Aroua, M.A. Hussain, A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant, J. Ind. Eng. Chem., 45 (2017) 145–155.
  28. P. Paul, Development and testing of a fully adaptable membrane bioreactor fouling model for a sidestream configuration system, Membranes, 3 (2013) 24–43.
  29. N. Delgrange, C. Cabassud, M. Cabassud, L. Durand-Bourlier, J.M. Lainé, Modelling of ultrafiltration fouling by neural network, Desalination, 118 (1998) 213–227.
  30. E.M. Avarzaman, P. Zarafshan, H. Mirsaeedghazi, B. Alaeddini, Intelligent modeling of permeate flux during membrane clarification of pomegranate juice, Nutr. Food Sci. Res., 4 (2017) 29–38.
  31. Z. Sekulić, D. Antanasijević, S. Stevanović, K. Trivunac, Application of artificial neural networks for estimating Cd, Zn, Pb removal efficiency from wastewater using complexationmicrofiltration process, Int. J. Environ. Sci. Technol., 14 (2017) 1383–1396.
  32. A.L. Ahmad, S. Ismail, S. Bhatia, Water recycling from palm oil mill effluent (POME) using membrane technology, Desalination, 157 (2003) 87–95.
  33. A.L. Ahmad, M.F. Chong, S. Bhatia, S. Ismail, Drinking water reclamation from palm oil mill effluent (POME) using membrane technology, Desalination, 191 (2006) 35–44.
  34. H.N. Abdurahman, H.N. Azhari, Production of biogas and performance evaluation of ultrasonic membrane anaerobi system (UMAS) for palm oil mill effluent treatment (POME), Intech Open, 2 (2018) 64.
  35. A. Nazatul Shima, Md.Y. Khairul Faezah, Effect of regenerated cellulose of ultrafiltration membranes on POME treatment, J. Teknologi (Sci. Eng.), 70 (2014) 81–86.
  36. S. Muhammad, M. Abdul Wahab, M.N. Mohd Tusirin, S.A. Siti Rozaimah, A.H. Hassimi, Investigation of three pre-treatment methods prior to nanofiltration membrane for palm oil mill effluent treatment, Sains Malaysiana, 44 (2015) 421–427.
  37. Y. Zakariah, A.W. Norhaliza, S. Shafishuhaza, A.H.A. Raof, Permeate flux measurement and prediction of submerged membrane bioreactor filtration process using intelligent techniques, J. Teknologi (Sci. Eng.), 73 (2015) 85–90.
  38. C.H. Neoh, P.Y. Yung, Z.Z. Noor, M.H. Razak, A. Aris, M.F. Md Din, Z. Ibrahim, Correlation between microbial community structure and performances of membrane bioreactor for treatment of palm oil mill effluent, Chem. Eng. J., 308 (2017) 656–663.
  39. S. Arefi-Oskoui, A. Khataee, V. Vatanpour, Modeling and optimization of NLDH/PVDF ultrafiltration nanocomposite membrane using artificial neural network-genetic algorithm hybrid, ACS Comb. Sci., 19 (2017) 464–477.
  40. B. Lennox, G.A. Montague, A.M. Frith, C. Gent, V. Bevan, Industrial application of neural networks — an investigation, J. Process Control, 11 (2001) 497–507.
  41. M.A. Hussain, Review of the applications of neural networks in chemical process control — simulation and online implementation, Artif. Intell. Eng., 13 (1999) 55–68.
  42. B. Karlik, A. Vehbi Olgac, Performance analysis of various activation functions in generalized MLP architectures of neural networks, Int. J. Artif. Intell. Expert Syst., 1 (2011) 111–122.
  43. M. Dornier, M. Decloux, G. Trystram, A. Lebert, Dynamic modeling of crossflow microfiltration using neural networks, J. Membr. Sci., 98 (1995) 263–273.
  44. W.R. Bowen, M.G. Jones, H.N.S. Yousef, Prediction of the rate of crossflow membrane ultrafiltration of colloids: a neural network approach, Chem. Eng. Sci., 53 (1998) 3793–3802.
  45. J. Vivier, A. Mehablia, A new artificial network approach for membrane filtration simulation, Chem. Biochem. Eng., 26 (2012) 241–248.
  46. A.L. Wei, G.M. Zeng, G.H. Huang, J. Liang, X.D. Li, Modeling of a permeate flux of cross-flow membrane filtration of colloidal suspensions: a wavelet network approach, Int. J. Environ. Sci. Technol., 6 (2009) 395–406.
  47. G.B. Gholikandi, M. Khosravi, Upgrading of submerged membrane bioreactor operation with regard to soluble microbial products and mathematical modeling for optimisation of critical flux, Desal. Wat. Treat., 39 (2012) 199–208.
  48. C. Aydiner, I. Demir, E. Yildiz, Modeling of flux decline in crossflow microfiltration using neural networks: the case of phosphate removal, J. Membr. Sci., 248 (2005) 53–62.
  49. S. Curcio, V. Calabrò, G. Iorio, Reduction and control of flux decline in cross-flow membrane processes modeled by artificial neural networks and hybrid systems, Desalination, 286 (2006) 125–132.
  50. G.R. Shetty, S. Chellam, Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks, J. Membr. Sci., 217 (2003) 69–86.
  51. S. Chellam, Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions, J. Membr. Sci., 258 (2005) 35–42.
  52. S. Strugholtz, S. Panglisch, J. Gebhardt, R. Gimbel, Modeling and optimization of ceramic membrane microfiltration using neural networks and genetic algorithms, Water Pract. Technol., 1 (2006).
  53. A. Aidan, N. Abdel-Jabbar, T.H. Ibrahim, V. Nenov, F. Mjalli, Neural network modeling and optimization of scheduling backwash for membrane bioreactor, Clean Technol. Environ. Policy, 10 (2007) 389–395.
  54. M. Kabsch-Korbutowicz, M. Kutylowska, Short-range forecast of permeate flux in detergent waste water ultrafiltration, Desal. Wat. Treat., 14 (2010) 30–36.
  55. A. Guadix, J.E. Zapata, M.C. Almecija, E.M. Guadix, Predicting the flux decline in milk cross-flow ceramic ultrafiltration by artificial neural networks, Desalination, 250 (2010) 1118–1120.
  56. H. Nourbakhsh, Z. Emam-Djomeh, M. Omid, H. Mirsaeedghazi, S. Moini, Prediction of red plum juice permeate flux during membrane processing with ANN optimized using RSM, Comput. Electron. Agric., 102 (2014) 1–9.
  57. Ö. Çinar, H. Hasar, C. Kinaci, Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network, J. Biotechnol., 123 (2006) 204–209.
  58. N. Ren, Z. Chen, X. Wang, D. Hu, A. Wang, Optimized operational parameters of a pilot scale membrane bioreactor for high-strength organic wastewater treatment, Int. Biodeterior. Biodegrad., 56 (2005) 216–223.
  59. L. Erdei, S. Vigneswaran, J. Kandasamy, Modelling of submerged membrane flocculation hybrid systems using statistical and artificial neural networks methods, J. Water Supply Res. Technol. AQUA, 59 (2010) 198–208.
  60. J. Comas, E. Meabe, L. Sancho, G. Ferrero, J. Sipma, H. Monclús, I. Rodriguez-Roda, Knowledge-based system for automatic MBR control, Water Sci. Technol., 62 (2010) 2829–2836.
  61. G. Ferrero, H. Monclús, L. Sancho, J.M. Garrido, J. Comas, I. Rodríguez-Roda, A knowledge-based control system for air-scour optimisation in membrane bioreactors, Water Sci. Technol., 63 (2011) 2025–2031.
  62. L. Ljung, System Identification: Theory for the User, Prentice Hall, New Jersey, 1999.
  63. P. Paul, Comparison of phenomenological membrane bioreactor activated sludge biological models with alternative versions based on time series input-output approaches, Desal. Wat. Treat., 35 (2011) 110–117.
  64. M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network modeling and response surface methodology of desalination by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
  65. Y.G. Lee, Y.S. Lee, J.J. Jeon, S. Lee, D.R. Yang, I.S. Kim, J.H. Kim, Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant, Desalination, 247 (2009) 180–189.
  66. A. Abbas, N. Al-Bastaki, Modeling of an RO water desalination unit using neural networks, Chem. Eng. J., 114 (2005) 139–143.
  67. Y. Zhao, J.S. Taylor, S. Chellam, Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks, J. Membr. Sci., 263 (2005) 38–46.
  68. L. Khaouane, Y. Ammi, S. Hanini, Modeling the retention of organic compounds by nanofiltration and reverse osmosis membranes using bootstrap aggregated neural networks, Arabian J. Sci. Eng., 42 (2017) 1443–1453.
  69. B. Rahmanian, M. Pakizeh, M. Esfandyari, F. Heshmatnezhad, A. Maskooki, Fuzzy modeling and simulation for lead removal using micellar-enhanced ultrafiltration (MEUF), J. Hazard. Mater., 192 (2011) 585–592.
  70. S.S. Madaeni, A.R. Kurdian, N.T. Hasankiadeh, A hierarchical fuzzy approach for flux prediction and optimization of milk microfiltration, Math. Comput. Modell., 57 (2013) 1038–1052.
  71. B.B. Ikonić, A.A. Takači, Z.Z. Zavargo, Z.N. Šereš, Ž.V. Šaranović, P.M. Ikonić, Fuzzy modeling of the permeate flux decline during microfiltration of starch suspensions, Chem. Eng. Technol., 37 (2014) 709–716.
  72. A. Altunkaynak, S. Chellam, Prediction of specific permeate flux during crossflow microfiltration of polydispersed colloidal suspensions by fuzzy logic models, Desalination, 253 (2010) 188–194.
  73. J. Shing, R. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man Cybern., 23 (1993) 665–685.
  74. M.S. Gaya, N.A. Wahab, Y. Sam, S.I. Samsuddin, Comparison of ANFIS and neural network direct inverse control applied to wastewater treatment system, Adv. Mater. Res., 845 (2014) 543–548.
  75. M. Annabestani, N. Naghavi, Nonlinear identification of IPMC actuators based on ANFIS–NARX paradigm, Sens. Actuators, A, 209 (2014) 140–148.
  76. X.-k. Zhang, Y.-c. Jin, G. Guo, ANFIS Applied to a Ship Autopilot Design, International Conference on Machine Learning and Cybernetics, September 13–16, 2006.
  77. B. Rahmanian, M. Pakizeh, S.A.A. Mansoori, M. Esfandyari, D. Jafari, H. Maddah, A. Maskooki, Prediction of MEUF process performance using artificial neural networks and ANFIS approaches, J. Taiwan Inst. Chem. Eng., 43 (2012) 558–565.
  78. J. Sargolzaei, M.H. Asl, A.H. Moghaddam, Membrane permeate flux and rejection factor prediction using intelligent systems, Desalination, 284 (2012) 92–99.
  79. I. Noshadi, A. Salahi, M. Hemmati, F. Rekabdar, T. Mohammadi, Experimental and ANFIS modeling for fouling analysis of oily wastewater treatment using ultrafiltration, Asia-Pac. J. Chem. Eng., 8 (2013) 527–538.
  80. A. Salahi, T. Mohammadi, R.M. Behbahani, Asymmetric polyethersulfone ultrafiltration membranes for oily wastewater treatment: synthesis, characterization, ANFIS modeling, and performance, J. Environ. Chem. Eng., 3 (2015) 170–178.
  81. M. Gori, A. Tesi, On the problem of local minima in backpropagation, IEEE Trans. Pattern Anal. Mach. Intell., 14 (1992) 76–86.
  82. J.N.D. Gupta, R.S. Sexton, Comparing backpropagation with a genetic algorithm for neural network training, Omega, 27 (1999) 679–684.
  83. G.B. Sahoo, C. Ray, Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms, J. Membr. Sci., 283 (2006) 147–157.
  84. Y. Liu, G. He, M. Tan, F. Nie, B. Li, Artificial neural network model for turbulence promoter-assisted cross flow micro filtration of particulate suspension, Desalination, 338 (2014) 57–64.
  85. S.S. Madaeni, N.T. Hasankiadeh, H.R. Tavakolian, Modeling and optimization of membrane chemical cleaning by artificial neural network, fuzzy logic, and genetic algorithm, Chem. Eng. Commun., 119 (2012) 399–416.
  86. S.S. Madaeni, M. Shiri, A.R. Kurdian, Modeling, optimization, and control of reverse osmosis water treatment in kazeroon power plant using neural network, Chem. Eng. Commun., 202 (2015) 37–41.
  87. H. Fazeli, R. Soleimani, M.-A. Ahmadi, R. Badrnezhad, A.H. Mohammadi, Experimental study and modeling of ultrafiltration of refinery effluents using a hybrid intelligent approach, Energy Fuels, 27 (2013) 3523−3537.
  88. J. Dasgupta, J. Sikder, D. Mandal, Modeling and optimization of polymer enhanced ultrafiltration using hybrid neuralgenetic algorithm based evolutionary approach, Appl. Soft Comput., 55 (2017) 108–126.
  89. S. Strugholtz, S. Panglisch, R. Gimbel, J. Gebhardt, Neural networks and genetic algorithms in membrane technology modelling, J. Water Supply Res. Technol. AQUA, 57 (2008) 23–35.
  90. T. Ludwig, P. Kern, M. Bongards, C. Wolf, Simulation and optimization of an experimental membrane wastewater treatment plant using computational intelligence methods, Water Sci. Technol., 63 (2011) 2255–2260.
  91. J.C. Chen, A. Seidel, Cost optimization of nanofiltration with fouling by natural organic matter, J. Environ. Eng., 128 (2002) 967–973.
  92. S. Mirjalili, S.Z. Mohd Hashim, H. Moradian Sardroudi, Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm, Appl. Math. Comput., 218 (2012) 11125–11137.
  93. K.W. Chau, Application of a PSO-based neural network in analysis of outcomes of construction claims, Autom. Constr., 16 (2007) 642–646.
  94. L. Zhifeng, P. Dan, W. Jianhua, Y. Shuangxi, Modelling of Membrane Fouling by PCA-PSOBP Neural Network, International Conference on Computing, Control and Industrial Engineering, 2010, pp. 34–37.
  95. Z. Yusuf, N. Abdul Wahab, S. Sahlan, Modeling of filtration process using PSO-neural network, J. Telecommun. Electron. Comput. Eng., 9 (2017) 15–19.
  96. E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm, Inf. Sci., 179 (2009) 2232–2248.
  97. M. Sheikhan, Z. Jadidi, Flow-based anomaly detection in high-speed links using modified GSA-optimized neural network, Neural Comput. Appl., 24 (2012) 599–611.
  98. M. Ghalambaz, A.R. Noghrehabadi, M.A. Behrang, E. Assareh, A. Ghanbarzadeh, N. Hedayat, A hybrid neural network and gravitational search algorithm (HNNGSA) method to solve well known Wessinger’s equation, World Acad. Sci. Eng. Technol., 5 (2011) 610–614.
  99. S. Sarafrazi, H. Nezamabadi-Pour, S. Saryazdi, Disruption: a new operator in gravitational search algorithm, Scientia Iranica, 18 (2011) 539–548.
  100. Z. Jadidi, V. Muthukkumarasamy, E. Sithirasenan, M. Sheikhan, Flow-Based Anomaly Detection Using Neural Network Optimized with GSA Algorithm, IEEE 33rd International Conference on Distributed Computing Systems Workshops, 2013, pp. 76–81.
  101. P. Niu, C. Liu, P. Li, G. Li, Optimized support vector regression model by improved gravitational search algorithm for flatness pattern recognition, Neural Comput. Appl., 26 (2015) 1167–1177.
  102. R.K. Khadanga, J.K. Satapathy, Electrical power and energy systems: a new hybrid GA – GSA algorithm for tuning damping controller parameters for a unified power flow controller, Int. J. Electr. Power Energy Syst., 73 (2015) 1060–1069.
  103. S. Jayaprakasam, S.K.A. Rahim, C.Y. Leow, PSOGSA-Explore: a new hybrid metaheuristic approach for beampattern optimization in collaborative beamforming, Appl. Soft Comput. J., 30 (2015) 229–237.
  104. S. Jiang, Z. Ji, Y. Shen, A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints, Int. J. Electr. Power Energy Syst., 55 (2014) 628–644.