References
- R.W. Baker, Membrane Technology and Applications, John
Wiley & Sons Ltd., England, 2004.
- W. Guo, H.-H. Ngo, J. Li, A mini-review on membrane fouling,
Bioresour. Technol., 122 (2012) 27–34.
- P. Le-Clech, V. Chen, and T.A.G. Fane, Fouling in membrane
bioreactors used in wastewater treatment, J. Membr. Sci.,
284 (2006) 17–53.
- S. Judd, The MBR Book: Principles and Applications of
Membrane Bioreactors for Water and Wastewater Treatment,
2nd ed., Elsevier, Oxford, 2010.
- E. Brauns, E. Van Hoof, C. Huyskens, H. De Wever, On the
concept of a supervisory, fuzzy set logic based, advanced
filtration control in membrane bioreactors, Desal. Wat. Treat.,
29 (2011) 119–127.
- A. Robles, M.V. Ruano, J. Ribes, J. Ferrer, Advanced control
system for optimal filtration in submerged anaerobic MBRs
(SAnMBRs), J. Membr. Sci., 430 (2013) 330–341.
- H. Choi, K. Zhang, D.D. Dionysiou, D.B. Oerther, G.A. Sorial,
Effect of permeate flux and tangential flow on membrane
fouling for wastewater treatment, Sep. Purif. Technol., 45 (2005)
68–78.
- I.-S. Chang, P.L. Clech, B. Jefferson, S. Judd, Membrane fouling
in membrane bioreactors for wastewater treatment, J. Environ.
Eng.-ASCE, 11 (2002) 1018–1029.
- S. Judd, Fouling control in submerged membrane bioreactors,
Water Sci. Technol., 51 (2005) 27–34.
- X.Z. Gao, S.J. Ovaska, Soft computing methods in motor fault
diagnosis, Appl. Soft Comput., 1 (2001) 73–81.
- V. Ravi, H. Kurniawan, P.N.K. Thai, P.R. Kumar, Soft computing
system for bank performance prediction, Appl. Soft Comput.,
8 (2008) 305–315.
- M. Hamachi, M. Cabassud, A. Davin, M. Mietton Peuchot,
Dynamic modelling of crossflow microfiltration of bentonite
suspension using recurrent neural networks, Chem. Eng.
Process. Process Intensif., 38 (1999) 203–210.
- M.A. Razavi, A. Mortazavi, M. Mousavi, Dynamic modelling of
milk ultrafiltration by artificial neural network, J. Membr. Sci.,
220 (2003) 47–58.
- R. Soleimani, N.A. Shoushtari, B. Mirza, A. Salahi, Experimental
investigation, modeling and optimization of membrane
separation using artificial neural network and multi-objective
optimization using genetic algorithm, Chem. Eng. Res. Des.,
91 (2013) 883–903.
- S. Geissler, T. Wintgens, T. Melin, K. Vossenkaul, C. Kullmann,
Modelling approaches for filtration processes with novel
submerged capillary modules in membrane bioreactors for
wastewater treatment, Desalination, 178 (2005) 125–134.
- M. Henze, W. Gujer, T. Mino, L. Van Loosedrecht, Activated
Sludge Models ASM1, ASM2, ASM2d and ASM3, IWA Task
Group on Mathematical Modelling for Design and Operation of
Biological Wastewater Treatment, IWA Scientific and Technical
Report, 2000.
- A. Fenu, G. Guglielmi, J. Jimenez, M. Spèrandio, D. Saroj,
B. Lesjean, C. Brepols, C. Thoeye, I. Nopens, Activated sludge
model (ASM) based modelling of membrane bioreactor
(MBR) processes: a critical review with special regard to MBR
specificities, Water Res., 44 (2010) 4272–4294.
- B. Verrecht, T. Maere, L. Benedetti, I. Nopens, S. Judd, Modelbased
energy optimisation of a small-scale decentralised membrane
bioreactor for urban reuse, Water Res., 44 (2010) 4047–4056.
- C. Duclos-Orsello, W. Li, C.-C. Ho, A three mechanism model to
describe fouling of microfiltration membranes, J. Membr. Sci.,
280 (2006) 856–866.
- J. Hermia, Constant pressure blocking filtration laws -
application to power-law Non-newtonian fluids, Trans. Inst.
Chem. Eng., 60 (1982) 183–187.
- C.-C. Ho, A.L. Zydney, A combined pore blockage and cake
filtration model for protein fouling during microfiltration,
J. Colloid Interface Sci., 232 (2000) 389–399.
- A.R. Pendashteh, A. Fakhru’l-Razi, N. Chaibakhsh, L.C. Abdullah,
S.S. Madaeni, Z.Z. Abidin, Modeling of membrane bioreactor
treating hypersaline oily wastewater by artificial neural
network, J. Hazard. Mater., 192 (2011) 568–575.
- F. Salehi, S.M.A. Razavi, Dynamic modeling of flux and total
hydraulic resistance in nanofiltration treatment of regeneration
waste brine using artificial neural networks, Desal. Wat. Treat.,
41 (2012) 95–104.
- R.H. Peiris, H. Budman, C. Moresoli, R.L. Legge, Fouling
control and optimization of a drinking water membrane
filtration process with real-time model parameter adaptation
using fluorescence and permeate flux measurements, J. Process
Control, 23 (2013) 70–77.
- P.J. Smith, S. Vigneswaran, H.H. Ngo, R. Ben-Aim, H. Nguyen,
A new approach to backwash initiation in membrane systems,
J. Membr. Sci., 278 (2006) 381–389.
- T. Janus, P. Paul, B. Ulanicki, Modelling and simulation of
short and long term membrane filtration experiments, Desal.
Wat. Treat., 8 (2009) 37–47.
- C.M. Chew, M.K. Aroua, M.A. Hussain, A practical hybrid
modelling approach for the prediction of potential fouling
parameters in ultrafiltration membrane water treatment plant,
J. Ind. Eng. Chem., 45 (2017) 145–155.
- P. Paul, Development and testing of a fully adaptable membrane
bioreactor fouling model for a sidestream configuration
system, Membranes, 3 (2013) 24–43.
- N. Delgrange, C. Cabassud, M. Cabassud, L. Durand-Bourlier,
J.M. Lainé, Modelling of ultrafiltration fouling by neural
network, Desalination, 118 (1998) 213–227.
- E.M. Avarzaman, P. Zarafshan, H. Mirsaeedghazi, B. Alaeddini,
Intelligent modeling of permeate flux during membrane
clarification of pomegranate juice, Nutr. Food Sci. Res., 4 (2017)
29–38.
- Z. Sekulić, D. Antanasijević, S. Stevanović, K. Trivunac,
Application of artificial neural networks for estimating Cd,
Zn, Pb removal efficiency from wastewater using complexationmicrofiltration
process, Int. J. Environ. Sci. Technol., 14 (2017)
1383–1396.
- A.L. Ahmad, S. Ismail, S. Bhatia, Water recycling from palm oil
mill effluent (POME) using membrane technology, Desalination,
157 (2003) 87–95.
- A.L. Ahmad, M.F. Chong, S. Bhatia, S. Ismail, Drinking
water reclamation from palm oil mill effluent (POME) using
membrane technology, Desalination, 191 (2006) 35–44.
- H.N. Abdurahman, H.N. Azhari, Production of biogas and
performance evaluation of ultrasonic membrane anaerobi
system (UMAS) for palm oil mill effluent treatment (POME),
Intech Open, 2 (2018) 64.
- A. Nazatul Shima, Md.Y. Khairul Faezah, Effect of regenerated
cellulose of ultrafiltration membranes on POME treatment,
J. Teknologi (Sci. Eng.), 70 (2014) 81–86.
- S. Muhammad, M. Abdul Wahab, M.N. Mohd Tusirin, S.A. Siti
Rozaimah, A.H. Hassimi, Investigation of three pre-treatment
methods prior to nanofiltration membrane for palm oil mill
effluent treatment, Sains Malaysiana, 44 (2015) 421–427.
- Y. Zakariah, A.W. Norhaliza, S. Shafishuhaza, A.H.A. Raof,
Permeate flux measurement and prediction of submerged
membrane bioreactor filtration process using intelligent
techniques, J. Teknologi (Sci. Eng.), 73 (2015) 85–90.
- C.H. Neoh, P.Y. Yung, Z.Z. Noor, M.H. Razak, A. Aris, M.F. Md
Din, Z. Ibrahim, Correlation between microbial community
structure and performances of membrane bioreactor for
treatment of palm oil mill effluent, Chem. Eng. J., 308 (2017)
656–663.
- S. Arefi-Oskoui, A. Khataee, V. Vatanpour, Modeling and
optimization of NLDH/PVDF ultrafiltration nanocomposite
membrane using artificial neural network-genetic algorithm
hybrid, ACS Comb. Sci., 19 (2017) 464–477.
- B. Lennox, G.A. Montague, A.M. Frith, C. Gent, V. Bevan,
Industrial application of neural networks — an investigation,
J. Process Control, 11 (2001) 497–507.
- M.A. Hussain, Review of the applications of neural networks
in chemical process control — simulation and online
implementation, Artif. Intell. Eng., 13 (1999) 55–68.
- B. Karlik, A. Vehbi Olgac, Performance analysis of various
activation functions in generalized MLP architectures of neural
networks, Int. J. Artif. Intell. Expert Syst., 1 (2011) 111–122.
- M. Dornier, M. Decloux, G. Trystram, A. Lebert, Dynamic
modeling of crossflow microfiltration using neural networks,
J. Membr. Sci., 98 (1995) 263–273.
- W.R. Bowen, M.G. Jones, H.N.S. Yousef, Prediction of the rate
of crossflow membrane ultrafiltration of colloids: a neural
network approach, Chem. Eng. Sci., 53 (1998) 3793–3802.
- J. Vivier, A. Mehablia, A new artificial network approach
for membrane filtration simulation, Chem. Biochem. Eng.,
26 (2012) 241–248.
- A.L. Wei, G.M. Zeng, G.H. Huang, J. Liang, X.D. Li, Modeling
of a permeate flux of cross-flow membrane filtration of colloidal
suspensions: a wavelet network approach, Int. J. Environ. Sci.
Technol., 6 (2009) 395–406.
- G.B. Gholikandi, M. Khosravi, Upgrading of submerged
membrane bioreactor operation with regard to soluble
microbial products and mathematical modeling for optimisation
of critical flux, Desal. Wat. Treat., 39 (2012) 199–208.
- C. Aydiner, I. Demir, E. Yildiz, Modeling of flux decline in
crossflow microfiltration using neural networks: the case of
phosphate removal, J. Membr. Sci., 248 (2005) 53–62.
- S. Curcio, V. Calabrò, G. Iorio, Reduction and control of flux
decline in cross-flow membrane processes modeled by artificial
neural networks and hybrid systems, Desalination, 286 (2006)
125–132.
- G.R. Shetty, S. Chellam, Predicting membrane fouling during
municipal drinking water nanofiltration using artificial neural
networks, J. Membr. Sci., 217 (2003) 69–86.
- S. Chellam, Artificial neural network model for transient
crossflow microfiltration of polydispersed suspensions,
J. Membr. Sci., 258 (2005) 35–42.
- S. Strugholtz, S. Panglisch, J. Gebhardt, R. Gimbel, Modeling
and optimization of ceramic membrane microfiltration using
neural networks and genetic algorithms, Water Pract. Technol.,
1 (2006).
- A. Aidan, N. Abdel-Jabbar, T.H. Ibrahim, V. Nenov, F. Mjalli,
Neural network modeling and optimization of scheduling
backwash for membrane bioreactor, Clean Technol. Environ.
Policy, 10 (2007) 389–395.
- M. Kabsch-Korbutowicz, M. Kutylowska, Short-range forecast
of permeate flux in detergent waste water ultrafiltration, Desal.
Wat. Treat., 14 (2010) 30–36.
- A. Guadix, J.E. Zapata, M.C. Almecija, E.M. Guadix, Predicting
the flux decline in milk cross-flow ceramic ultrafiltration by
artificial neural networks, Desalination, 250 (2010) 1118–1120.
- H. Nourbakhsh, Z. Emam-Djomeh, M. Omid, H. Mirsaeedghazi,
S. Moini, Prediction of red plum juice permeate flux during
membrane processing with ANN optimized using RSM,
Comput. Electron. Agric., 102 (2014) 1–9.
- Ö. Çinar, H. Hasar, C. Kinaci, Modeling of submerged
membrane bioreactor treating cheese whey wastewater by
artificial neural network, J. Biotechnol., 123 (2006) 204–209.
- N. Ren, Z. Chen, X. Wang, D. Hu, A. Wang, Optimized
operational parameters of a pilot scale membrane bioreactor for
high-strength organic wastewater treatment, Int. Biodeterior.
Biodegrad., 56 (2005) 216–223.
- L. Erdei, S. Vigneswaran, J. Kandasamy, Modelling of
submerged membrane flocculation hybrid systems using
statistical and artificial neural networks methods, J. Water
Supply Res. Technol. AQUA, 59 (2010) 198–208.
- J. Comas, E. Meabe, L. Sancho, G. Ferrero, J. Sipma, H. Monclús,
I. Rodriguez-Roda, Knowledge-based system for automatic
MBR control, Water Sci. Technol., 62 (2010) 2829–2836.
- G. Ferrero, H. Monclús, L. Sancho, J.M. Garrido, J. Comas,
I. Rodríguez-Roda, A knowledge-based control system for
air-scour optimisation in membrane bioreactors, Water Sci.
Technol., 63 (2011) 2025–2031.
- L. Ljung, System Identification: Theory for the User, Prentice
Hall, New Jersey, 1999.
- P. Paul, Comparison of phenomenological membrane bioreactor
activated sludge biological models with alternative
versions based on time series input-output approaches,
Desal. Wat. Treat., 35 (2011) 110–117.
- M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network
modeling and response surface methodology of desalination
by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
- Y.G. Lee, Y.S. Lee, J.J. Jeon, S. Lee, D.R. Yang, I.S. Kim, J.H. Kim,
Artificial neural network model for optimizing operation of
a seawater reverse osmosis desalination plant, Desalination,
247 (2009) 180–189.
- A. Abbas, N. Al-Bastaki, Modeling of an RO water desalination
unit using neural networks, Chem. Eng. J., 114 (2005) 139–143.
- Y. Zhao, J.S. Taylor, S. Chellam, Predicting RO/NF water quality
by modified solution diffusion model and artificial neural
networks, J. Membr. Sci., 263 (2005) 38–46.
- L. Khaouane, Y. Ammi, S. Hanini, Modeling the retention of
organic compounds by nanofiltration and reverse osmosis
membranes using bootstrap aggregated neural networks,
Arabian J. Sci. Eng., 42 (2017) 1443–1453.
- B. Rahmanian, M. Pakizeh, M. Esfandyari, F. Heshmatnezhad,
A. Maskooki, Fuzzy modeling and simulation for lead removal
using micellar-enhanced ultrafiltration (MEUF), J. Hazard.
Mater., 192 (2011) 585–592.
- S.S. Madaeni, A.R. Kurdian, N.T. Hasankiadeh, A hierarchical
fuzzy approach for flux prediction and optimization of
milk microfiltration, Math. Comput. Modell., 57 (2013)
1038–1052.
- B.B. Ikonić, A.A. Takači, Z.Z. Zavargo, Z.N. Šereš, Ž.V. Šaranović,
P.M. Ikonić, Fuzzy modeling of the permeate flux decline
during microfiltration of starch suspensions, Chem. Eng.
Technol., 37 (2014) 709–716.
- A. Altunkaynak, S. Chellam, Prediction of specific permeate
flux during crossflow microfiltration of polydispersed colloidal
suspensions by fuzzy logic models, Desalination, 253 (2010)
188–194.
- J. Shing, R. Jang, ANFIS: adaptive-network-based fuzzy
inference system, IEEE Trans. Syst. Man Cybern., 23 (1993)
665–685.
- M.S. Gaya, N.A. Wahab, Y. Sam, S.I. Samsuddin, Comparison
of ANFIS and neural network direct inverse control applied
to wastewater treatment system, Adv. Mater. Res., 845 (2014)
543–548.
- M. Annabestani, N. Naghavi, Nonlinear identification of IPMC
actuators based on ANFIS–NARX paradigm, Sens. Actuators,
A, 209 (2014) 140–148.
- X.-k. Zhang, Y.-c. Jin, G. Guo, ANFIS Applied to a Ship Autopilot
Design, International Conference on Machine Learning and
Cybernetics, September 13–16, 2006.
- B. Rahmanian, M. Pakizeh, S.A.A. Mansoori, M. Esfandyari,
D. Jafari, H. Maddah, A. Maskooki, Prediction of MEUF process
performance using artificial neural networks and ANFIS
approaches, J. Taiwan Inst. Chem. Eng., 43 (2012) 558–565.
- J. Sargolzaei, M.H. Asl, A.H. Moghaddam, Membrane permeate
flux and rejection factor prediction using intelligent systems,
Desalination, 284 (2012) 92–99.
- I. Noshadi, A. Salahi, M. Hemmati, F. Rekabdar, T. Mohammadi,
Experimental and ANFIS modeling for fouling analysis of oily
wastewater treatment using ultrafiltration, Asia-Pac. J. Chem.
Eng., 8 (2013) 527–538.
- A. Salahi, T. Mohammadi, R.M. Behbahani, Asymmetric
polyethersulfone ultrafiltration membranes for oily wastewater
treatment: synthesis, characterization, ANFIS modeling, and
performance, J. Environ. Chem. Eng., 3 (2015) 170–178.
- M. Gori, A. Tesi, On the problem of local minima in
backpropagation, IEEE Trans. Pattern Anal. Mach. Intell.,
14 (1992) 76–86.
- J.N.D. Gupta, R.S. Sexton, Comparing backpropagation with a
genetic algorithm for neural network training, Omega, 27 (1999)
679–684.
- G.B. Sahoo, C. Ray, Predicting flux decline in crossflow
membranes using artificial neural networks and genetic
algorithms, J. Membr. Sci., 283 (2006) 147–157.
- Y. Liu, G. He, M. Tan, F. Nie, B. Li, Artificial neural network
model for turbulence promoter-assisted cross flow micro
filtration of particulate suspension, Desalination, 338 (2014)
57–64.
- S.S. Madaeni, N.T. Hasankiadeh, H.R. Tavakolian, Modeling
and optimization of membrane chemical cleaning by artificial
neural network, fuzzy logic, and genetic algorithm, Chem. Eng.
Commun., 119 (2012) 399–416.
- S.S. Madaeni, M. Shiri, A.R. Kurdian, Modeling, optimization,
and control of reverse osmosis water treatment in kazeroon
power plant using neural network, Chem. Eng. Commun.,
202 (2015) 37–41.
- H. Fazeli, R. Soleimani, M.-A. Ahmadi, R. Badrnezhad,
A.H. Mohammadi, Experimental study and modeling of
ultrafiltration of refinery effluents using a hybrid intelligent
approach, Energy Fuels, 27 (2013) 3523−3537.
- J. Dasgupta, J. Sikder, D. Mandal, Modeling and optimization
of polymer enhanced ultrafiltration using hybrid neuralgenetic
algorithm based evolutionary approach, Appl. Soft
Comput., 55 (2017) 108–126.
- S. Strugholtz, S. Panglisch, R. Gimbel, J. Gebhardt, Neural
networks and genetic algorithms in membrane technology
modelling, J. Water Supply Res. Technol. AQUA, 57 (2008)
23–35.
- T. Ludwig, P. Kern, M. Bongards, C. Wolf, Simulation and
optimization of an experimental membrane wastewater
treatment plant using computational intelligence methods,
Water Sci. Technol., 63 (2011) 2255–2260.
- J.C. Chen, A. Seidel, Cost optimization of nanofiltration with
fouling by natural organic matter, J. Environ. Eng., 128 (2002)
967–973.
- S. Mirjalili, S.Z. Mohd Hashim, H. Moradian Sardroudi,
Training feedforward neural networks using hybrid particle
swarm optimization and gravitational search algorithm,
Appl. Math. Comput., 218 (2012) 11125–11137.
- K.W. Chau, Application of a PSO-based neural network in
analysis of outcomes of construction claims, Autom. Constr.,
16 (2007) 642–646.
- L. Zhifeng, P. Dan, W. Jianhua, Y. Shuangxi, Modelling
of Membrane Fouling by PCA-PSOBP Neural Network,
International Conference on Computing, Control and Industrial
Engineering, 2010, pp. 34–37.
- Z. Yusuf, N. Abdul Wahab, S. Sahlan, Modeling of filtration
process using PSO-neural network, J. Telecommun. Electron.
Comput. Eng., 9 (2017) 15–19.
- E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA:
a gravitational search algorithm, Inf. Sci., 179 (2009) 2232–2248.
- M. Sheikhan, Z. Jadidi, Flow-based anomaly detection in
high-speed links using modified GSA-optimized neural
network, Neural Comput. Appl., 24 (2012) 599–611.
- M. Ghalambaz, A.R. Noghrehabadi, M.A. Behrang, E. Assareh,
A. Ghanbarzadeh, N. Hedayat, A hybrid neural network and
gravitational search algorithm (HNNGSA) method to solve well
known Wessinger’s equation, World Acad. Sci. Eng. Technol.,
5 (2011) 610–614.
- S. Sarafrazi, H. Nezamabadi-Pour, S. Saryazdi, Disruption:
a new operator in gravitational search algorithm, Scientia
Iranica, 18 (2011) 539–548.
- Z. Jadidi, V. Muthukkumarasamy, E. Sithirasenan,
M. Sheikhan, Flow-Based Anomaly Detection Using Neural
Network Optimized with GSA Algorithm, IEEE 33rd
International Conference on Distributed Computing Systems
Workshops, 2013, pp. 76–81.
- P. Niu, C. Liu, P. Li, G. Li, Optimized support vector regression
model by improved gravitational search algorithm for
flatness pattern recognition, Neural Comput. Appl., 26 (2015)
1167–1177.
- R.K. Khadanga, J.K. Satapathy, Electrical power and energy
systems: a new hybrid GA – GSA algorithm for tuning
damping controller parameters for a unified power flow
controller, Int. J. Electr. Power Energy Syst., 73 (2015)
1060–1069.
- S. Jayaprakasam, S.K.A. Rahim, C.Y. Leow, PSOGSA-Explore:
a new hybrid metaheuristic approach for beampattern
optimization in collaborative beamforming, Appl. Soft
Comput. J., 30 (2015) 229–237.
- S. Jiang, Z. Ji, Y. Shen, A novel hybrid particle swarm
optimization and gravitational search algorithm for solving
economic emission load dispatch problems with various
practical constraints, Int. J. Electr. Power Energy Syst., 55
(2014) 628–644.