References
- N. Bensalah, M.A. Quiroz Alfaro, C.A. Martínez-Huitle,
Electrochemical treatment of synthetic wastewaters containing
Alphazurine A dye, Chem. Eng. J., 149 (2009) 348–352.
- M. Doğan, Y. Özdemir, M. Alkan, Adsorption kinetics and
mechanism of cationic methyl violet and methylene blue dyes
onto sepiolite, Dyes Pigm., 75 (2007) 701–713.
- K. Nakata, A. Fujishima, TiO2 photocatalysis: design and
applications, J. Photochem. Photobiol., C, 13 (2012) 169–189.
- D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibañez,
I. Di Somma, Solar photocatalysis: materials, reactors, some
commercial, and pre-industrialized applications. A comprehensive
approach, Appl. Catal., B, 170–171 (2015) 90–123.
- K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a
historical overview and future prospects, Jpn. J. Appl. Phys.,
Part 1, 44 (2005) 8269–8285.
- S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation
of cyanide and sulfite in aqueous solutions at titanium dioxide
powder, J. Am. Chem. Soc., 8 (1977) 303–304.
- P.M. Martins, V. Gomez, A.C. Lopes, C.J. Tavares, G. Botelho,
S. Irusta, Improving photocatalytic performance and
recyclability by development of Er-doped and Er/Pr-codoped
TiO2/poly(vinylidene difluoride)−trifluoroethylene composite
membranes, J. Phys. Chem. C, 118 (2014) 27944–27953.
- N.A. Almeida, P.M. Martins, S. Teixeira, J.A.L. da Silva,
V. Sencadas, K. Kühn, G. Cuniberti, S. Lanceros-Mendez,
P.A.A.P. Marques, TiO2/graphene oxide immobilized in P(VDFTrFE)
electrospun membranes with enhanced visible-lightinduced
photocatalytic performance, J. Mater. Sci., 51 (2016)
6974–6986.
- E.A. Kozlova, A.V. Vorontsov, Noble metal and sulfuric acid
modified TiO2 photocatalysts: mineralization of organophosphorous
compounds, Appl. Catal., B, 63 (2006) 114–123.
- R. Marschall, L. Wang, Non-metal doping of transition metal
oxides for visible-light photocatalysis, Catal. Today, 225 (2014)
111–135.
- T. Lavanya, M. Dutta, S. Ramaprabhu, K. Satheesh, Superior
photocatalytic performance of graphene wrapped anatase/rutile mixed phase TiO2 nanofibers synthesized by a simple and
facile route, J. Environ. Chem. Eng., 5 (2017) 494–503.
- P.C. Yao, S.H. Zhong, Z.R. Shen, TiO2/halloysite composites
codoped with carbon and nitrogen from melamine and their
enhanced solar-light-driven photocatalytic performance,
Int. J. Photoenergy, 2015 (2015) 605690.
- P.M. Martins, C.G. Ferreira, A.R. Silva, B. Magalhães,
M.M. Alves, L. Pereira, P.A.A.P. Marques, M. Melle-Franco,
S. Lanceros-Méndez, TiO2/graphene and TiO2/graphene oxide
nanocomposites for photocatalytic applications: a computer
modeling and experimental study, Composites Part B, 145
(2018) 39–46.
- Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, W. Xiao,
C. Xie, Enhanced photocatalytic activity of chemically bonded
TiO2/graphene composites based on the effective interfacial
charge transfer through the C–Ti bond, ACS Catal., 7 (2013)
1477–1485.
- Y. Chen, J. Wang, W. Li, Research progress of new titanium
dioxide based photocatalytic materials, J. Mater. Eng., 44 (2016)
103–113.
- J. Liu, L. Wang, J. Tang, J. Ma, Photocatalytic degradation of
commercially sourced naphthenic acids by TiO2-graphene
composite nanomaterial, Chemosphere, 149 (2016) 328–335.
- H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite
as a high performance photocatalyst, ACS Nano, 4 (2009)
380–386.
- P. Calza, C. Hadjicostas, V.A. Sakkas, M. Sarro, C. Minero,
C. Medana, T.A. Albanis, Photocatalytic transformation of the
antipsychotic drug risperidone in aqueous media on reduced
graphene oxide—TiO2 composites, Appl. Catal., B, 183 (2016)
96–106.
- Z. Zhang, F. Xiao, Y. Guo, S. Wang, Y. Liu, One-pot selfassembled
three-dimensional TiO2-graphene hydrogel with
improved adsorption capacities and photocatalytic and
electrochemical activities, ACS Appl. Mater. Interfaces, 5 (2013)
2227–2233.
- B. Qiu, M. Xing, J. Zhang, Mesoporous TiO2 nanocrystals
grown in situ on graphene aerogels for high photocatalysis and
lithium-ion batteries, J. Am. Chem. Soc., 136 (2014) 5852–5855.
- R.M. Jugade, S. Sharma, S. Gokhale, CVD synthesis of graphene
nanoplates on MgO support, Mater. Sci. Poland, 32 (2014)
243–246.
- G. Ning, Z. Fan, G. Wang, J. Gao, W. Qian, F. Wei, Gram-scale
synthesis of nanomesh graphene with high surface area and its
application in supercapacitor electrodes, Chem. Commun., 47
(2011) 5976–5978.
- E. Mooser, W.B. Pearson, A.F. Gibson, Progress in
Semiconductors, John Wiley & Sons, 5 (1960) 53–60.
- R.K. Madhusudan, S.V. Manorama, A.R. Reddy, Bandgap
studies on anatase titanium dioxide nanoparticles, Mater.
Chem. Phys., 78 (2002) 239–245.
- M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann,
Environmental applications of semiconductor photocatalysis,
Chem. Rev., 95 (1995) 69–96.
- S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis
under UV/visible light: selected results and related mechanisms
on interfacial charge carrier transfer dynamics, J. Phys. Chem.
A, 115 (2011) 13211–13241.
- L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos,
J.L. Figueiredo, J.L. Faria, P. Falaras, A.M.T. Silva, Advanced
nanostructured photocatalysts based on reduced graphene
oxide–TiO2 composites for degradation of diphenhydramine
pharmaceutical and methyl orange dye, Appl. Catal., B, 123–124
(2012) 241–256.
- F. Dufour, S. Pigeot-Remy, S. Durupthy, S. Cassaignon, V. Ruaux,
S. Torelli, L. Mariey, F. Maugé, C. Chanéac, Morphological
control of TiO2 anatase nanoparticles: what is the good surface
property to obtain efficient photocatalysts?, Appl. Catal., B,
174–175 (2015) 350–360.
- T.N. Blanton, D. Majumdar, Characterization of X-ray
irradiated graphene oxide coatings using X-ray diffraction,
X-ray photoelectron spectroscopy, and atomic force microscopy,
Powder Diffr., 28 (2013) 68–71.
- H. Feng, R. Cheng, X. Zhao, X. Duan, J. Li, A low-temperature
method to produce highly reduced graphene oxide, Nat.
Commun., 4 (2013) 1539–1546.
- T. Lavanya, K. Satheesh, M. Dutta, N.V. Jaya, N. Fukata,
Superior photocatalytic performance of reduced graphene
oxide wrapped electrospun anatase mesoporous TiO2 nanofiber,
J. Alloys Compd., 615 (2014) 643–650.
- J. Yang, S. Mei, J.M.F. Ferreira, Hydrothermal synthesis of
nanosized titania powders: influence of peptization and
peptizing agents on the crystalline phases and phase transitions,
J. Am. Ceram. Soc., 83 (2000) 1361–1368.
- Y. Iida, S. Ozaki, Grain growth and phase transformation of
titanium oxide during calcination, J. Am. Ceram. Soc., 44 (2010)
120–127.
- F. Tuinstra, J.L. Koenig, Raman spectrum of graphite, J. Chem.
Phys., 53 (1970) 1126–1130.
- J. Maultzsch, S. Reich, C. Thomsen, Double-resonant Raman
scattering in graphite: interference effects, selection rules, and
phonon dispersion, Phys. Rev. B: Condens. Matter, 70 (2004)
2806–2810.
- T. Lavanya, M. Dutta, K. Satheesh, Graphene wrapped porous
tubular rutile TiO2 nanofibers with superior interfacial contact
for highly efficient photocatalytic performance for water
treatment, Sep. Purif. Technol., 168 (2016) 284–293.
- H.K. Yu, Effective reduction of copper surface for clean
graphene growth, J. Electrochem. Soc., 12 (2015) 277–281.
- G. Rajender, P.K. Giri, Formation mechanism of graphene
quantum dots and their edge state conversion probed by
photoluminescence and Raman spectroscopy, J. Mater. Chem.
C, 4 (2016) 10852–10865.
- S. Umrao, S. Abraham, F. Theil, S. Pandey, V. Ciobota, P.K. Shukla,
C.J. Rupp, S. Chakraborty, R. Ahuja, J. Popp, B. Dietzek,
A. Srivastava, A possible mechanism for the emergence of an
additional band gap due to a Ti–O–C bond in the TiO2–graphene
hybrid system for enhanced photodegradation of methylene
blue under visible light, RSC Adv., 4 (2014) 59890–59901.
- B. Santara, P.K. Giri, K. Imakita, M. Fujii, Evidence of oxygen
vacancy induced room temperature ferromagnetism in
solvothermally synthesized undoped TiO2 nanoribbons,
Nanoscale, 5 (2013) 5476–5488.
- J.S. Lee, K.H. You, C.B. Park, Highly photoactive, low bandgap
TiO2 nanoparticles wrapped by graphene, Adv. Mater., 24 (2012)
1133–1133.
- Y.B. Zhang, B. Chen, Factors affecting degradation of Methyl
Violet catalyzed by visible light of titanium dioxide, Appl.
Chem. Ind., 40 (2011) 814–816.
- H.B. Hadjltaief, P. Da Costa, M.E. Galvez, M.B. Zina, Influence
of operational parameters in the heterogeneous photo-Fenton
discoloration of wastewaters in the presence of an iron-pillared
clay, Ind. Eng. Chem. Res., 52 (2013) 16656–16665.
- S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation
of two commercial dyes in aqueous phase using different
photocatalysts, J. Hazard. Mater., 141 (2007) 581–590.
- N. Zhang, B. Li, S. Li, S. Yang. Graphene-supported mesoporous
titania nanosheets for efficient photodegradation, J. Colloid
Interface Sci., 505 (2017) 711–718.
- B. Zhou, X. Zhao, H. Liu, J. Qu, C.P. Huang, Visible-light
sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic
composites for the degradation of methylene blue dye in dilute
aqueous solutions, Appl. Catal., B, 99 (2010) 214–221.
- M. Minella, F. Sordello, C. Minero, Photocatalytic process in
TiO2/graphene hybrid materials. Evidence of charge separation
by electron transfer from reduced graphene oxide to TiO2,
Catal. Today, 281 (2017) 29–37.
- J. Suave, S.M. Amorim, R.F.P.M. Moreira, TiO2-graphene
nanocomposite supported on floating autoclaved cellular
concrete for photocatalytic removal of organic compounds,
J. Environ. Chem. Eng., 5 (2017) 3215–3223.