References

  1. N. Bensalah, M.A. Quiroz Alfaro, C.A. Martínez-Huitle, Electrochemical treatment of synthetic wastewaters containing Alphazurine A dye, Chem. Eng. J., 149 (2009) 348–352.
  2. M. Doğan, Y. Özdemir, M. Alkan, Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite, Dyes Pigm., 75 (2007) 701–713.
  3. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol., C, 13 (2012) 169–189.
  4. D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibañez, I. Di Somma, Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach, Appl. Catal., B, 170–171 (2015) 90–123.
  5. K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects, Jpn. J. Appl. Phys., Part 1, 44 (2005) 8269–8285.
  6. S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at titanium dioxide powder, J. Am. Chem. Soc., 8 (1977) 303–304.
  7. P.M. Martins, V. Gomez, A.C. Lopes, C.J. Tavares, G. Botelho, S. Irusta, Improving photocatalytic performance and recyclability by development of Er-doped and Er/Pr-codoped TiO2/poly(vinylidene difluoride)−trifluoroethylene composite membranes, J. Phys. Chem. C, 118 (2014) 27944–27953.
  8. N.A. Almeida, P.M. Martins, S. Teixeira, J.A.L. da Silva, V. Sencadas, K. Kühn, G. Cuniberti, S. Lanceros-Mendez, P.A.A.P. Marques, TiO2/graphene oxide immobilized in P(VDFTrFE) electrospun membranes with enhanced visible-lightinduced photocatalytic performance, J. Mater. Sci., 51 (2016) 6974–6986.
  9. E.A. Kozlova, A.V. Vorontsov, Noble metal and sulfuric acid modified TiO2 photocatalysts: mineralization of organophosphorous compounds, Appl. Catal., B, 63 (2006) 114–123.
  10. R. Marschall, L. Wang, Non-metal doping of transition metal oxides for visible-light photocatalysis, Catal. Today, 225 (2014) 111–135.
  11. T. Lavanya, M. Dutta, S. Ramaprabhu, K. Satheesh, Superior photocatalytic performance of graphene wrapped anatase/rutile mixed phase TiO2 nanofibers synthesized by a simple and facile route, J. Environ. Chem. Eng., 5 (2017) 494–503.
  12. P.C. Yao, S.H. Zhong, Z.R. Shen, TiO2/halloysite composites codoped with carbon and nitrogen from melamine and their enhanced solar-light-driven photocatalytic performance, Int. J. Photoenergy, 2015 (2015) 605690.
  13. P.M. Martins, C.G. Ferreira, A.R. Silva, B. Magalhães, M.M. Alves, L. Pereira, P.A.A.P. Marques, M. Melle-Franco, S. Lanceros-Méndez, TiO2/graphene and TiO2/graphene oxide nanocomposites for photocatalytic applications: a computer modeling and experimental study, Composites Part B, 145 (2018) 39–46.
  14. Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, W. Xiao, C. Xie, Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond, ACS Catal., 7 (2013) 1477–1485.
  15. Y. Chen, J. Wang, W. Li, Research progress of new titanium dioxide based photocatalytic materials, J. Mater. Eng., 44 (2016) 103–113.
  16. J. Liu, L. Wang, J. Tang, J. Ma, Photocatalytic degradation of commercially sourced naphthenic acids by TiO2-graphene composite nanomaterial, Chemosphere, 149 (2016) 328–335.
  17. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4 (2009) 380–386.
  18. P. Calza, C. Hadjicostas, V.A. Sakkas, M. Sarro, C. Minero, C. Medana, T.A. Albanis, Photocatalytic transformation of the antipsychotic drug risperidone in aqueous media on reduced graphene oxide—TiO2 composites, Appl. Catal., B, 183 (2016) 96–106.
  19. Z. Zhang, F. Xiao, Y. Guo, S. Wang, Y. Liu, One-pot selfassembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities, ACS Appl. Mater. Interfaces, 5 (2013) 2227–2233.
  20. B. Qiu, M. Xing, J. Zhang, Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries, J. Am. Chem. Soc., 136 (2014) 5852–5855.
  21. R.M. Jugade, S. Sharma, S. Gokhale, CVD synthesis of graphene nanoplates on MgO support, Mater. Sci. Poland, 32 (2014) 243–246.
  22. G. Ning, Z. Fan, G. Wang, J. Gao, W. Qian, F. Wei, Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes, Chem. Commun., 47 (2011) 5976–5978.
  23. E. Mooser, W.B. Pearson, A.F. Gibson, Progress in Semiconductors, John Wiley & Sons, 5 (1960) 53–60.
  24. R.K. Madhusudan, S.V. Manorama, A.R. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles, Mater. Chem. Phys., 78 (2002) 239–245.
  25. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  26. S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A, 115 (2011) 13211–13241.
  27. L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, J.L. Figueiredo, J.L. Faria, P. Falaras, A.M.T. Silva, Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye, Appl. Catal., B, 123–124 (2012) 241–256.
  28. F. Dufour, S. Pigeot-Remy, S. Durupthy, S. Cassaignon, V. Ruaux, S. Torelli, L. Mariey, F. Maugé, C. Chanéac, Morphological control of TiO2 anatase nanoparticles: what is the good surface property to obtain efficient photocatalysts?, Appl. Catal., B, 174–175 (2015) 350–360.
  29. T.N. Blanton, D. Majumdar, Characterization of X-ray irradiated graphene oxide coatings using X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy, Powder Diffr., 28 (2013) 68–71.
  30. H. Feng, R. Cheng, X. Zhao, X. Duan, J. Li, A low-temperature method to produce highly reduced graphene oxide, Nat. Commun., 4 (2013) 1539–1546.
  31. T. Lavanya, K. Satheesh, M. Dutta, N.V. Jaya, N. Fukata, Superior photocatalytic performance of reduced graphene oxide wrapped electrospun anatase mesoporous TiO2 nanofiber, J. Alloys Compd., 615 (2014) 643–650.
  32. J. Yang, S. Mei, J.M.F. Ferreira, Hydrothermal synthesis of nanosized titania powders: influence of peptization and peptizing agents on the crystalline phases and phase transitions, J. Am. Ceram. Soc., 83 (2000) 1361–1368.
  33. Y. Iida, S. Ozaki, Grain growth and phase transformation of titanium oxide during calcination, J. Am. Ceram. Soc., 44 (2010) 120–127.
  34. F. Tuinstra, J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53 (1970) 1126–1130.
  35. J. Maultzsch, S. Reich, C. Thomsen, Double-resonant Raman scattering in graphite: interference effects, selection rules, and phonon dispersion, Phys. Rev. B: Condens. Matter, 70 (2004) 2806–2810.
  36. T. Lavanya, M. Dutta, K. Satheesh, Graphene wrapped porous tubular rutile TiO2 nanofibers with superior interfacial contact for highly efficient photocatalytic performance for water treatment, Sep. Purif. Technol., 168 (2016) 284–293.
  37. H.K. Yu, Effective reduction of copper surface for clean graphene growth, J. Electrochem. Soc., 12 (2015) 277–281.
  38. G. Rajender, P.K. Giri, Formation mechanism of graphene quantum dots and their edge state conversion probed by photoluminescence and Raman spectroscopy, J. Mater. Chem. C, 4 (2016) 10852–10865.
  39. S. Umrao, S. Abraham, F. Theil, S. Pandey, V. Ciobota, P.K. Shukla, C.J. Rupp, S. Chakraborty, R. Ahuja, J. Popp, B. Dietzek, A. Srivastava, A possible mechanism for the emergence of an additional band gap due to a Ti–O–C bond in the TiO2–graphene hybrid system for enhanced photodegradation of methylene blue under visible light, RSC Adv., 4 (2014) 59890–59901.
  40. B. Santara, P.K. Giri, K. Imakita, M. Fujii, Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons, Nanoscale, 5 (2013) 5476–5488.
  41. J.S. Lee, K.H. You, C.B. Park, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene, Adv. Mater., 24 (2012) 1133–1133.
  42. Y.B. Zhang, B. Chen, Factors affecting degradation of Methyl Violet catalyzed by visible light of titanium dioxide, Appl. Chem. Ind., 40 (2011) 814–816.
  43. H.B. Hadjltaief, P. Da Costa, M.E. Galvez, M.B. Zina, Influence of operational parameters in the heterogeneous photo-Fenton discoloration of wastewaters in the presence of an iron-pillared clay, Ind. Eng. Chem. Res., 52 (2013) 16656–16665.
  44. S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater., 141 (2007) 581–590.
  45. N. Zhang, B. Li, S. Li, S. Yang. Graphene-supported mesoporous titania nanosheets for efficient photodegradation, J. Colloid Interface Sci., 505 (2017) 711–718.
  46. B. Zhou, X. Zhao, H. Liu, J. Qu, C.P. Huang, Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions, Appl. Catal., B, 99 (2010) 214–221.
  47. M. Minella, F. Sordello, C. Minero, Photocatalytic process in TiO2/graphene hybrid materials. Evidence of charge separation by electron transfer from reduced graphene oxide to TiO2, Catal. Today, 281 (2017) 29–37.
  48. J. Suave, S.M. Amorim, R.F.P.M. Moreira, TiO2-graphene nanocomposite supported on floating autoclaved cellular concrete for photocatalytic removal of organic compounds, J. Environ. Chem. Eng., 5 (2017) 3215–3223.