References
- M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive removal
of antibiotics from water and wastewater: progress and
challenges, Sci. Total Environ., 532 (2015) 112–126.
- F. Mohammadi, A. Esrafili, H.R. Sobhi, M. Behbahani,
M. Kermani, E. Asgari, Z.R. Fasih, Evaluation of adsorption
and removal of methylparaben from aqueous solutions using
amino-functionalized magnetic nanoparticles as an efficient
adsorbent: optimization and modeling by response surface
methodology (RSM), Desal. Wat. Treat., 103 (2018) 248–260.
- A.S. Mohammadi, M. Sardar, M. Almasian, Equilibrium and
kinetic studies on the adsorption of penicillin G by chestnut
shell, Environ. Eng. Manage J., 15 (2016) 167–173.
- M.J. Ahmed, S.K. Theydan, Microwave assisted preparation
of microporous activated carbon from Siris seed pods for
adsorption of metronidazole antibiotic, Chem. Eng. J., 214 (2013)
310–318.
- D. Carrales-Alvarado, R. Ocampo-Pérez, R. Leyva-Ramos,
J. Rivera-Utrilla, Removal of the antibiotic metronidazole by
adsorption on various carbon materials from aqueous phase,
J. Colloid Interface Sci., 436 (2014) 276–285.
- M. Farzadkia, E. Bazrafshan, A. Esrafili, J.-K. Yang, M. Shirzad-Siboni, Photocatalytic degradation of metronidazole with
illuminated TiO2 nanoparticles, J. Environ. Health Sci. Eng.,
13 (2015) 35.
- V. Homem, L. Santos, Degradation and removal methods
of antibiotics from aqueous matrices–a review, J. Environ.
Manage., 92 (2011) 2304–2347.
- M.N. Chong, B. Jin, C.W. Chow, C. Saint, Recent developments
in photocatalytic water treatment technology: a review, Water
Res., 44 (2010) 2997–3027.
- S. Feizpoor, A. Habibi-Yangjeh, K. Yubuta, S. Vadivel,
Fabrication of TiO2/CoMoO4/PANI nanocomposites with
enhanced photocatalytic performances for removal of organic
and inorganic pollutants under visible light, Mater. Chem.
Phys., 224 (2019) 10–21.
- S. Feizpoor, A. Habibi-Yangjeh, Integration of Ag2WO4 and
AgBr with TiO2 to fabricate ternary nanocomposites: novel
plasmonic photocatalysts with remarkable activity under
visible light, Mater. Res. Bull., 99 (2018) 93–102.
- K. Nakata, A. Fujishima, TiO2 photocatalysis: design and
applications, J. Photochem. Photobiol., C, 13 (2012) 169–189.
- V. Vaiano, O. Sacco, D. Sannino, P. Ciambelli, Photocatalytic
removal of spiramycin from wastewater under visible light with
N-doped TiO2 photocatalysts, Chem. Eng. J., 261 (2015) 3–8.
- C. Zhao, M. Pelaez, X. Duan, H. Deng, K. O’Shea, D. Fatta-Kassinos, D.D. Dionysiou, Role of pH on photolytic and
photocatalytic degradation of antibiotic oxytetracycline
in aqueous solution under visible/solar light: kinetics and
mechanism studies, Appl. Catal., B, 134 (2013) 83–92.
- J. Zhu, S. Wei, L. Zhang, Y. Mao, J. Ryu, N. Haldolaarachchige,
D.P. Young, Z. Guo, Electrical and dielectric properties of
polyaniline–Al2O3 nanocomposites derived from various Al2O3
nanostructures, J. Mater. Chem., 21 (2011) 3952–3959.
- R. Konta, T. Ishii, H. Kato, A. Kudo, Photocatalytic activities
of noble metal ion doped SrTiO3 under visible light irradiation,
J. Phys. Chem. B, 108 (2004) 8992–8995.
- S. Rehman, R. Ullah, A. Butt, N. Gohar, Strategies of making
TiO2 and ZnO visible light active, J. Hazard. Mater., 170 (2009)
560–569.
- T.P. Chou, Q. Zhang, G. Cao, Effects of dye loading
conditions on the energy conversion efficiency of ZnO and
TiO2 dye-sensitized solar cells, J. Phys. Chem. C, 111 (2007)
18804–18811.
- R. Qiu, D. Zhang, Y. Mo, L. Song, E. Brewer, X. Huang, Y. Xiong,
Photocatalytic activity of polymer-modified ZnO under visible
light irradiation, J. Hazard. Mater., 156 (2008) 80–85.
- S. Kaur, V. Singh, Visible light induced sonophotocatalytic
degradation of Reactive Red dye 198 using dye sensitized TiO2,
Ultrason. Sonochem., 14 (2007) 531–537.
- L. Zhang, M. Wan, Polyaniline/TiO2 composite nanotubes,
J. Phys. Chem. B, 107 (2003) 6748–6753.
- S. Kalikeri, N. Kamath, D.J. Gadgil, V.S. Kodialbail, Visible lightinduced
photocatalytic degradation of Reactive Blue-19 over
highly efficient polyaniline-TiO2 nanocomposite: a comparative
study with solar and UV photocatalysis, Environ. Sci. Pollut.
Res., 25 (2018) 3731–3744.
- M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi,
A. Rouhi, Magnetically separable nanocomposites based on
ZnO and their applications in photocatalytic processes: a
review, Crit. Rev. Env. Sci. Technol., 48 (2018) 1–52.
- Z. Han, F. Qiu, R. Eisenberg, P.L. Holland, T.D. Krauss,
Robust photogeneration of H2 in water using semiconductor
nanocrystals and a nickel catalyst, Science, 338 (2012)
1321–1324.
- H. Zhang, R. Zong, J. Zhao, Y. Zhu, Dramatic visible
photocatalytic degradation performances due to synergetic
effect of TiO2 with PANI, Environ. Sci. Technol., 42 (2008)
3803–3807.
- A. Olad, R. Nosrati, Use of response surface methodology for
optimization of the photocatalytic degradation of ampicillin
by ZnO/polyaniline nanocomposite, Res. Chem. Intermed.,
41 (2015) 1351–1363.
- P. Kannusamy, T. Sivalingam, Chitosan–ZnO/polyaniline
hybrid composites: polymerization of aniline with chitosan–for better thermal and electrical property, Polym. Degrad.
Stab., 98 (2013) 988–996.
- M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, Review on
the criteria anticipated for the fabrication of highly efficient
ZnO-based visible-light-driven photocatalysts, J. Ind. Eng.
Chem., 62 (2018) 1–25.
- M.A. Prathap, R. Srivastava, B. Satpati, Simultaneous detection
of guanine, adenine, thymine, and cytosine at polyaniline/MnO2
modified electrode, Electrochim. Acta, 114 (2013) 285–295.
- S. Radhakrishnan, K. Krishnamoorthy, C. Sekar, J. Wilson,
S.J. Kim, A promising electrochemical sensing platform based
on ternary composite of polyaniline-Fe2O3-reduced graphene
oxide for sensitive hydroquinone determination, Chem. Eng. J.,
266 (2015) 385–385.
- S. Feizpoor, A. Habibi-Yangjeh, Ternary TiO2/Fe3O4/CoWO4
nanocomposites: novel magnetic visible-light-driven photocatalysts
with substantially enhanced activity through pn
heterojunction, J. Colloid Interface Sci., 524 (2018) 325–336.
- S. Feizpoor, A. Habibi-Yangjeh, K. Yubuta, Integration of carbon
dots and polyaniline with TiO2 nanoparticles: substantially
enhanced photocatalytic activity to removal various pollutants
under visible light, J. Photochem. Photobiol., A, 367 (2018)
94–104.
- S. Bourdo, T. Viswanathan, Graphite/polyaniline (GP) composites:
synthesis and characterization, Carbon, 43 (2005)
2983–2988.
- M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, Review on
magnetically separable graphitic carbon nitride-based nanocomposites
as promising visible-light-driven photocatalysts,
J. Mater. Sci. - Mater. Electron., 29 (2018) 1719–1747.
- A. Olad, A. Rashidzadeh, Preparation and anticorrosive
properties of PANI/Na-MMT and PANI/O-MMT nanocomposites,
Prog. Org. Coat., 62 (2008) 293–298.
- C. Fitzgerald, M. Venkatesan, J. Lunney, L. Dorneles, J. Coey,
Cobalt-doped ZnO–a room temperature dilute magnetic
semiconductor, Appl. Surf. Sci., 247 (2005) 493–496.
- W. Li, Y. Tian, C. Zhao, Q. Zhang, W. Geng, Synthesis of
magnetically separable Fe3O4@PANI/TiO2 photocatalyst with
fast charge migration for photodegradation of EDTA under
visible-light irradiation, Chem. Eng. J., 303 (2016) 282–291.
- B. Özbay, N. Genç, İ. Özbay, B. Bağhaki, S. Zor, Photocatalytic
activities of polyaniline-modified TiO2 and ZnO under visible
light: an experimental and modeling study, Clean Technol.
Environ. Policy, 18 (2016) 2591–2601.
- D. Wang, Y. Wang, X. Li, Q. Luo, J. An, J. Yue, Sunlight
photocatalytic activity of polypyrrole–TiO2 nanocomposites
prepared by ‘in situ’ method, Catal. Commun., 9 (2008) 1162–1166.
- D. Chowdhury, A. Paul, A. Chattopadhyay, Photocatalytic
polypyrrole−TiO2−nanoparticles composite thin film generated
at the air−water interface, Langmuir, 21 (2005) 4123–4128.
- N. Guo, Y. Liang, S. Lan, L. Liu, J. Zhang, G. Ji, S. Gan,
Microscale hierarchical three-dimensional flowerlike TiO2/PANI composite: synthesis, characterization, and its remarkable
photocatalytic activity on organic dyes under UV-light and
sunlight irradiation, J. Phys. Chem. C, 118 (2014) 18343–18355.
- L. Gu, J. Wang, R. Qi, X. Wang, P. Xu, X. Han, A novel
incorporating style of polyaniline/TiO2 composites as effective
visible photocatalysts, J. Mol. Catal. A: Chem., 357 (2012) 19–25.
- M.O. Ansari, F. Mohammad, Thermal stability of HCl‐dopedpolyaniline
and TiO2 nanoparticles‐based nanocomposites,
J. Appl. Polym. Sci., 124 (2012) 4433–4442.
- Z. Zhao, Y. Zhou, W. Wan, F. Wang, Q. Zhang, Y. Lin,
Nanoporous TiO2/polyaniline composite films with enhanced
photoelectrochemical properties, Mater. Lett., 130 (2014) 150–153.
- WEF, APHA, Standard Methods for the Examination of Water
and Wastewater, American Public Health Association (APHA),
Washington, D.C., USA, 2005.
- J.A. Melero, F. Martínez, J.A. Botas, R. Molina, M.I. Pariente,
Heterogeneous catalytic wet peroxide oxidation systems for the
treatment of an industrial pharmaceutical wastewater, Water
Res., 43 (2009) 4010–4018.
- V. Gilja, K. Novaković, J. Travas-Sejdic, Z. Hrnjak-Murgić,
M.K. Roković, M. Žic, Stability and synergistic effect of
polyaniline/TiO2 photocatalysts in degradation of azo dye in
wastewater, Nanomaterials, 7 (2017) 412.
- A. Olad, S. Behboudi, A.A. Entezami, Preparation, characterization
and photocatalytic activity of TiO2/polyaniline coreshell
nanocomposite, Bull. Mater. Sci., 35 (2012) 801–809.
- T. Nawrot, M. Plusquin, J. Hogervorst, H.A. Roels,
H. Celis, L. Thijs, J. Vangronsveld, E. Van Hecke, J.A. Staessen,
Environmental exposure to cadmium and risk of cancer: a
prospective population-based study, Lancet Oncol., 7 (2006)
119–126.
- M. Farzadkia, A. Esrafili, M.A. Baghapour, Y.D. Shahamat,
N. Okhovat, Degradation of metronidazole in aqueous solution
by nano-ZnO/UV photocatalytic process, Desal. Wat. Treat.,
52 (2014) 4947–4952.
- C. Yang, M. Zhang, W. Dong, G. Cui, Z. Ren, W. Wang, Highly
efficient photocatalytic degradation of methylene blue by
PoPD/TiO2 nanocomposite, PLoS one, 12 (2017) e0174104.
- C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang,
W. Wang, Enhanced photocatalytic activity of PANI/TiO2 due
to their photosensitization-synergetic effect, Electrochim. Acta,
247 (2017) 486–495.
- M.O. Ansari, F. Mohammad, Thermal stability, electrical
conductivity and ammonia sensing studies on p-toluenesulfonic
acid doped polyaniline: titanium dioxide (pTSA/Pani: TiO2)
nanocomposites, Sens. Actuators B Chem., 157 (2011) 122–129.
- A. Talaie, J.-Y. Lee, K. Adachi, T. Taguchi, J. Romagnoli,
Dynamic polymeric electrodes, dynamic computer modeling
and dynamic electrochemical sensing, J. Electroanal. Chem.,
468 (1999) 19–25.
- Z.M. Tahir, E.C. Alocilja, D.L. Grooms, Polyaniline synthesis
and its biosensor application, Biosens. Bioelectron., 20 (2005)
1690–1695.
- R. Schindler, G. Lonnemann, J. Schaeffer, S. Shaldon, K. Koch,
S. Krautzig, The effect of ultrafiltered dialysate on the cellular
content of interleukin-1 receptor antagonist in patients on
chronic hemodialysis, Nephron, 68 (1994) 229–233.
- C. Zhao, H. Deng, Y. Li, Z. Liu, Photodegradation of
oxytetracycline in aqueous by 5A and 13X loaded with TiO2
under UV irradiation, J. Hazard. Mater., 176 (2010) 884–892.
- R. Das, M. Bhaumik, S. Giri, A. Maity, Sonocatalytic rapid
degradation of Congo red dye from aqueous solution using
magnetic Fe0/polyaniline nanofibers, Ultrason. Sonochem.,
37 (2017) 600–613.
- S. Debnath, N. Ballav, H. Nyoni, A. Maity, K. Pillay, Optimization
and mechanism elucidation of the catalytic photodegradation
of the dyes Eosin Yellow (EY) and Naphthol
blue black (NBB) by a polyaniline-coated titanium dioxide
nanocomposite, Appl. Catal., B, 163 (2015) 330–342.
- X. Chen, H. Li, H. Wu, Y. Wu, Y. Shang, J. Pan, X. Xiong,
Fabrication of TiO2@PANI nanobelts with the enhanced
absorption and photocatalytic performance under visible light,
Mater. Lett., 172 (2016) 52–55.
- M. Elsayed, M. Gobara, Enhancement removal of tartrazine
dye using HCl-doped polyaniline and TiO2-decorated PANI
particles, Mater. Res. Express, 3 (2016) 085301.
- X. Li, D. Wang, G. Cheng, Q. Luo, J. An, Y. Wang, Preparation
of polyaniline-modified TiO2 nanoparticles and their photocatalytic
activity under visible light illumination, Appl. Catal.,
B, 81 (2008) 267–273.
- G. Liao, S. Chen, X. Quan, Y. Zhang, H. Zhao, Remarkable
improvement of visible light photocatalysis with PANI modified
core–shell mesoporous TiO2 microspheres, Appl. Catal., B, 102
(2011) 126–131.
- X. Wang, A. Wang, J. Ma, Visible-light-driven photocatalytic
removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites, J. Hazard. Mater., 336 (2017) 81–92.
- X. Chen, H. Li, H. Wu, Y. Wu, Y. Shang, J. Pan, X. Xiong,
Fabrication of TiO2@ PANI nanobelts with the enhanced
absorption and photocatalytic performance under visible light,
Mater. Lett., 172 (2016) 52–55.