References

  1. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive removal of antibiotics from water and wastewater: progress and challenges, Sci. Total Environ., 532 (2015) 112–126.
  2. F. Mohammadi, A. Esrafili, H.R. Sobhi, M. Behbahani, M. Kermani, E. Asgari, Z.R. Fasih, Evaluation of adsorption and removal of methylparaben from aqueous solutions using amino-functionalized magnetic nanoparticles as an efficient adsorbent: optimization and modeling by response surface methodology (RSM), Desal. Wat. Treat., 103 (2018) 248–260.
  3. A.S. Mohammadi, M. Sardar, M. Almasian, Equilibrium and kinetic studies on the adsorption of penicillin G by chestnut shell, Environ. Eng. Manage J., 15 (2016) 167–173.
  4. M.J. Ahmed, S.K. Theydan, Microwave assisted preparation of microporous activated carbon from Siris seed pods for adsorption of metronidazole antibiotic, Chem. Eng. J., 214 (2013) 310–318.
  5. D. Carrales-Alvarado, R. Ocampo-Pérez, R. Leyva-Ramos, J. Rivera-Utrilla, Removal of the antibiotic metronidazole by adsorption on various carbon materials from aqueous phase, J. Colloid Interface Sci., 436 (2014) 276–285.
  6. M. Farzadkia, E. Bazrafshan, A. Esrafili, J.-K. Yang, M. Shirzad-Siboni, Photocatalytic degradation of metronidazole with illuminated TiO2 nanoparticles, J. Environ. Health Sci. Eng., 13 (2015) 35.
  7. V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices–a review, J. Environ. Manage., 92 (2011) 2304–2347.
  8. M.N. Chong, B. Jin, C.W. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  9. S. Feizpoor, A. Habibi-Yangjeh, K. Yubuta, S. Vadivel, Fabrication of TiO2/CoMoO4/PANI nanocomposites with enhanced photocatalytic performances for removal of organic and inorganic pollutants under visible light, Mater. Chem. Phys., 224 (2019) 10–21.
  10. S. Feizpoor, A. Habibi-Yangjeh, Integration of Ag2WO4 and AgBr with TiO2 to fabricate ternary nanocomposites: novel plasmonic photocatalysts with remarkable activity under visible light, Mater. Res. Bull., 99 (2018) 93–102.
  11. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol., C, 13 (2012) 169–189.
  12. V. Vaiano, O. Sacco, D. Sannino, P. Ciambelli, Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts, Chem. Eng. J., 261 (2015) 3–8.
  13. C. Zhao, M. Pelaez, X. Duan, H. Deng, K. O’Shea, D. Fatta-Kassinos, D.D. Dionysiou, Role of pH on photolytic and photocatalytic degradation of antibiotic oxytetracycline in aqueous solution under visible/solar light: kinetics and mechanism studies, Appl. Catal., B, 134 (2013) 83–92.
  14. J. Zhu, S. Wei, L. Zhang, Y. Mao, J. Ryu, N. Haldolaarachchige, D.P. Young, Z. Guo, Electrical and dielectric properties of polyaniline–Al2O3 nanocomposites derived from various Al2O3 nanostructures, J. Mater. Chem., 21 (2011) 3952–3959.
  15. R. Konta, T. Ishii, H. Kato, A. Kudo, Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation, J. Phys. Chem. B, 108 (2004) 8992–8995.
  16. S. Rehman, R. Ullah, A. Butt, N. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater., 170 (2009) 560–569.
  17. T.P. Chou, Q. Zhang, G. Cao, Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-sensitized solar cells, J. Phys. Chem. C, 111 (2007) 18804–18811.
  18. R. Qiu, D. Zhang, Y. Mo, L. Song, E. Brewer, X. Huang, Y. Xiong, Photocatalytic activity of polymer-modified ZnO under visible light irradiation, J. Hazard. Mater., 156 (2008) 80–85.
  19. S. Kaur, V. Singh, Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO2, Ultrason. Sonochem., 14 (2007) 531–537.
  20. L. Zhang, M. Wan, Polyaniline/TiO2 composite nanotubes, J. Phys. Chem. B, 107 (2003) 6748–6753.
  21. S. Kalikeri, N. Kamath, D.J. Gadgil, V.S. Kodialbail, Visible lightinduced photocatalytic degradation of Reactive Blue-19 over highly efficient polyaniline-TiO2 nanocomposite: a comparative study with solar and UV photocatalysis, Environ. Sci. Pollut. Res., 25 (2018) 3731–3744.
  22. M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, A. Rouhi, Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review, Crit. Rev. Env. Sci. Technol., 48 (2018) 1–52.
  23. Z. Han, F. Qiu, R. Eisenberg, P.L. Holland, T.D. Krauss, Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst, Science, 338 (2012) 1321–1324.
  24. H. Zhang, R. Zong, J. Zhao, Y. Zhu, Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI, Environ. Sci. Technol., 42 (2008) 3803–3807.
  25. A. Olad, R. Nosrati, Use of response surface methodology for optimization of the photocatalytic degradation of ampicillin by ZnO/polyaniline nanocomposite, Res. Chem. Intermed., 41 (2015) 1351–1363.
  26. P. Kannusamy, T. Sivalingam, Chitosan–ZnO/polyaniline hybrid composites: polymerization of aniline with chitosan–for better thermal and electrical property, Polym. Degrad. Stab., 98 (2013) 988–996.
  27. M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts, J. Ind. Eng. Chem., 62 (2018) 1–25.
  28. M.A. Prathap, R. Srivastava, B. Satpati, Simultaneous detection of guanine, adenine, thymine, and cytosine at polyaniline/MnO2 modified electrode, Electrochim. Acta, 114 (2013) 285–295.
  29. S. Radhakrishnan, K. Krishnamoorthy, C. Sekar, J. Wilson, S.J. Kim, A promising electrochemical sensing platform based on ternary composite of polyaniline-Fe2O3-reduced graphene oxide for sensitive hydroquinone determination, Chem. Eng. J., 266 (2015) 385–385.
  30. S. Feizpoor, A. Habibi-Yangjeh, Ternary TiO2/Fe3O4/CoWO4 nanocomposites: novel magnetic visible-light-driven photocatalysts with substantially enhanced activity through pn heterojunction, J. Colloid Interface Sci., 524 (2018) 325–336.
  31. S. Feizpoor, A. Habibi-Yangjeh, K. Yubuta, Integration of carbon dots and polyaniline with TiO2 nanoparticles: substantially enhanced photocatalytic activity to removal various pollutants under visible light, J. Photochem. Photobiol., A, 367 (2018) 94–104.
  32. S. Bourdo, T. Viswanathan, Graphite/polyaniline (GP) composites: synthesis and characterization, Carbon, 43 (2005) 2983–2988.
  33. M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts, J. Mater. Sci. - Mater. Electron., 29 (2018) 1719–1747.
  34. A. Olad, A. Rashidzadeh, Preparation and anticorrosive properties of PANI/Na-MMT and PANI/O-MMT nanocomposites, Prog. Org. Coat., 62 (2008) 293–298.
  35. C. Fitzgerald, M. Venkatesan, J. Lunney, L. Dorneles, J. Coey, Cobalt-doped ZnO–a room temperature dilute magnetic semiconductor, Appl. Surf. Sci., 247 (2005) 493–496.
  36. W. Li, Y. Tian, C. Zhao, Q. Zhang, W. Geng, Synthesis of magnetically separable Fe3O4@PANI/TiO2 photocatalyst with fast charge migration for photodegradation of EDTA under visible-light irradiation, Chem. Eng. J., 303 (2016) 282–291.
  37. B. Özbay, N. Genç, İ. Özbay, B. Bağhaki, S. Zor, Photocatalytic activities of polyaniline-modified TiO2 and ZnO under visible light: an experimental and modeling study, Clean Technol. Environ. Policy, 18 (2016) 2591–2601.
  38. D. Wang, Y. Wang, X. Li, Q. Luo, J. An, J. Yue, Sunlight photocatalytic activity of polypyrrole–TiO2 nanocomposites prepared by ‘in situ’ method, Catal. Commun., 9 (2008) 1162–1166.
  39. D. Chowdhury, A. Paul, A. Chattopadhyay, Photocatalytic polypyrrole−TiO2−nanoparticles composite thin film generated at the air−water interface, Langmuir, 21 (2005) 4123–4128.
  40. N. Guo, Y. Liang, S. Lan, L. Liu, J. Zhang, G. Ji, S. Gan, Microscale hierarchical three-dimensional flowerlike TiO2/PANI composite: synthesis, characterization, and its remarkable photocatalytic activity on organic dyes under UV-light and sunlight irradiation, J. Phys. Chem. C, 118 (2014) 18343–18355.
  41. L. Gu, J. Wang, R. Qi, X. Wang, P. Xu, X. Han, A novel incorporating style of polyaniline/TiO2 composites as effective visible photocatalysts, J. Mol. Catal. A: Chem., 357 (2012) 19–25.
  42. M.O. Ansari, F. Mohammad, Thermal stability of HCl‐dopedpolyaniline and TiO2 nanoparticles‐based nanocomposites, J. Appl. Polym. Sci., 124 (2012) 4433–4442.
  43. Z. Zhao, Y. Zhou, W. Wan, F. Wang, Q. Zhang, Y. Lin, Nanoporous TiO2/polyaniline composite films with enhanced photoelectrochemical properties, Mater. Lett., 130 (2014) 150–153.
  44. WEF, APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), Washington, D.C., USA, 2005.
  45. J.A. Melero, F. Martínez, J.A. Botas, R. Molina, M.I. Pariente, Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater, Water Res., 43 (2009) 4010–4018.
  46. V. Gilja, K. Novaković, J. Travas-Sejdic, Z. Hrnjak-Murgić, M.K. Roković, M. Žic, Stability and synergistic effect of polyaniline/TiO2 photocatalysts in degradation of azo dye in wastewater, Nanomaterials, 7 (2017) 412.
  47. A. Olad, S. Behboudi, A.A. Entezami, Preparation, characterization and photocatalytic activity of TiO2/polyaniline coreshell nanocomposite, Bull. Mater. Sci., 35 (2012) 801–809.
  48. T. Nawrot, M. Plusquin, J. Hogervorst, H.A. Roels, H. Celis, L. Thijs, J. Vangronsveld, E. Van Hecke, J.A. Staessen, Environmental exposure to cadmium and risk of cancer: a prospective population-based study, Lancet Oncol., 7 (2006) 119–126.
  49. M. Farzadkia, A. Esrafili, M.A. Baghapour, Y.D. Shahamat, N. Okhovat, Degradation of metronidazole in aqueous solution by nano-ZnO/UV photocatalytic process, Desal. Wat. Treat., 52 (2014) 4947–4952.
  50. C. Yang, M. Zhang, W. Dong, G. Cui, Z. Ren, W. Wang, Highly efficient photocatalytic degradation of methylene blue by PoPD/TiO2 nanocomposite, PLoS one, 12 (2017) e0174104.
  51. C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang, W. Wang, Enhanced photocatalytic activity of PANI/TiO2 due to their photosensitization-synergetic effect, Electrochim. Acta, 247 (2017) 486–495.
  52. M.O. Ansari, F. Mohammad, Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline: titanium dioxide (pTSA/Pani: TiO2) nanocomposites, Sens. Actuators B Chem., 157 (2011) 122–129.
  53. A. Talaie, J.-Y. Lee, K. Adachi, T. Taguchi, J. Romagnoli, Dynamic polymeric electrodes, dynamic computer modeling and dynamic electrochemical sensing, J. Electroanal. Chem., 468 (1999) 19–25.
  54. Z.M. Tahir, E.C. Alocilja, D.L. Grooms, Polyaniline synthesis and its biosensor application, Biosens. Bioelectron., 20 (2005) 1690–1695.
  55. R. Schindler, G. Lonnemann, J. Schaeffer, S. Shaldon, K. Koch, S. Krautzig, The effect of ultrafiltered dialysate on the cellular content of interleukin-1 receptor antagonist in patients on chronic hemodialysis, Nephron, 68 (1994) 229–233.
  56. C. Zhao, H. Deng, Y. Li, Z. Liu, Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation, J. Hazard. Mater., 176 (2010) 884–892.
  57. R. Das, M. Bhaumik, S. Giri, A. Maity, Sonocatalytic rapid degradation of Congo red dye from aqueous solution using magnetic Fe0/polyaniline nanofibers, Ultrason. Sonochem., 37 (2017) 600–613.
  58. S. Debnath, N. Ballav, H. Nyoni, A. Maity, K. Pillay, Optimization and mechanism elucidation of the catalytic photodegradation of the dyes Eosin Yellow (EY) and Naphthol blue black (NBB) by a polyaniline-coated titanium dioxide nanocomposite, Appl. Catal., B, 163 (2015) 330–342.
  59. X. Chen, H. Li, H. Wu, Y. Wu, Y. Shang, J. Pan, X. Xiong, Fabrication of TiO2@PANI nanobelts with the enhanced absorption and photocatalytic performance under visible light, Mater. Lett., 172 (2016) 52–55.
  60. M. Elsayed, M. Gobara, Enhancement removal of tartrazine dye using HCl-doped polyaniline and TiO2-decorated PANI particles, Mater. Res. Express, 3 (2016) 085301.
  61. X. Li, D. Wang, G. Cheng, Q. Luo, J. An, Y. Wang, Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination, Appl. Catal., B, 81 (2008) 267–273.
  62. G. Liao, S. Chen, X. Quan, Y. Zhang, H. Zhao, Remarkable improvement of visible light photocatalysis with PANI modified core–shell mesoporous TiO2 microspheres, Appl. Catal., B, 102 (2011) 126–131.
  63. X. Wang, A. Wang, J. Ma, Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites, J. Hazard. Mater., 336 (2017) 81–92.
  64. X. Chen, H. Li, H. Wu, Y. Wu, Y. Shang, J. Pan, X. Xiong, Fabrication of TiO2@ PANI nanobelts with the enhanced absorption and photocatalytic performance under visible light, Mater. Lett., 172 (2016) 52–55.