References

  1. P. Roslev, T. Lentz, M. Hesselsoe, Microbial toxicity of methyl tert-butyl ether (MTBE) determined with fluorescent and luminescent bioassays, Chemosphere, 120 (2015) 284–291.
  2. R. Gao, Q. Zhang, R. Lv, F. Soyekwo, A. Zhu, Q. Liu, Highly efficient polymer–MOF nanocomposite membrane for pervaporation separation of water/methanol/MTBE ternary mixture, Chem. Eng. Res. Des., 117 (2017) 688–697.
  3. T. Topgül, The effects of MTBE blends on engine performance and exhaust emissions in a spark ignition engine, Fuel Process. Technol., 138 (2015) 483–489.
  4. P. Toccalino, Human-Health Effects of MTBE: A Literature Summary, United States Geological Survey, Accessed September, 8 (2005) 2009, Available at: http://sd.water.usgs.gov/nawqa/vocns/mtbe_hh_summary.html.
  5. J. Ma, D. Xiong, H. Li, Y. Ding, X. Xia, Y. Yang, Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): a modeling study, J. Hazard. Mater., 332 (2017) 10–18.
  6. I. Levchuk, A. Bhatnagar, M. Sillanpää, Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water, Sci. Total Environ., 476 (2014) 415–433.
  7. M.J. Metcalf, G.J. Stevens, G.A. Robbins, Application of first order kinetics to characterize MTBE natural attenuation in groundwater, J. Contam. Hydrol., 187 (2016) 47–54.
  8. A.V. Russo, D.N.D. Lobo, S.E. Jacobo, Removal of MTBE in columns filled with modified natural zeolites, Procedia Mater. Sci., 8 (2015) 375–382.
  9. B.D. Lindsey, J.D. Ayotte, B.C. Jurgens, L.A. Desimone, Using groundwater age distributions to understand changes in methyl tert-butyl ether (MtBE) concentrations in ambient groundwater, northeastern United States, Sci. Total Environ., 579 (2017) 579–587.
  10. A.D. Kiadehi, A. Ebadi, A. Aghaeinejad-Meybodi, Removal of methyl tert-butyl ether (MTBE) from aqueous medium in the presence of nano-perfluorooctyl alumina (PFOAL): experimental study of adsorption and catalytic ozonation processes, Sep. Purif. Technol., 182 (2017) 238–246.
  11. S. Moussavi, M.H. Ehrampoush, A. Mahvi, S. Rahimi, M. Ahmadian, Efficiency of multi-walled carbon nanotubes in adsorbing humic acid from aqueous solutions, Asian J. Chem., 26 (2014) 821.
  12. G. Mascolo, R. Ciannarella, L. Balest, A. Lopez, Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: a laboratory investigation, J. Hazard. Mater., 152 (2008) 1138–1145.
  13. S.Y. Jasim, J. Saththasivam, Advanced oxidation processes to remove cyanotoxins in water, Desalination, 406 (2017) 83–87.
  14. Y.-q. Gao, N.-y. Gao, Y. Deng, Y.-q. Yang, Y. Ma, Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water, Chem. Eng. J., 195–196 (2012) 248–253.
  15. M.R. Samarghandi, S.A. Babaee, M. Ahmadian, G. Asgari, F. Ghorbani Shahna, A. Poormohammadi, Performance catalytic ozonation over the carbosieve in the removal of toluene from waste air stream, J. Res. Health Sci., 14 (2014) 227–232.
  16. P. Xie, J. Ma, W. Liu, J. Zou, S. Yue, Impact of UV/persulfate pretreatment on the formation of disinfection byproducts during subsequent chlorination of natural organic matter, Chem. Eng. J., 269 (2015) 203–211.
  17. X. Du, Y. Zhang, I. Hussain, S. Huang, W. Huang, Insight into reactive oxygen species in persulfate activation with copper oxide: activated persulfate and trace radicals, Chem. Eng. J., 313 (2017) 1023–1032.
  18. L.W. Matzek, K.E. Carter, Sustained persulfate activation using solid iron: kinetics and application to ciprofloxacin degradation, Chem. Eng. J., 307 (2017) 650–660.
  19. Y. Ji, Y. Shi, W. Dong, X. Wen, M. Jiang, J. Lu, Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution, Chem. Eng. J., 298 (2016) 225–233.
  20. L. Zhou, C. Ferronato, J.-M. Chovelon, M. Sleiman, C. Richard, Investigations of diatrizoate degradation by photo-activated persulfate, Chem. Eng. J., 311 (2017) 28–36.
  21. X. Cheng, H. Guo, Y. Zhang, X. Wu, Y. Liu, Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes, Water Res., 113 (2017) 80–88.
  22. Z.-H. Diao, X.-R. Xu, D. Jiang, L.-J. Kong, Y.-X. Sun, Y.-X. Hu, Q.-W. Hao, H. Chen, Bentonite-supported nanoscale zerovalent iron/persulfate system for the simultaneous removal of Cr(VI) and phenol from aqueous solutions, Chem. Eng. J., 302 (2016) 213–222.
  23. D. An, P. Westerhoff, M. Zheng, M. Wu, Y. Yang, C.-A. Chiu, UV-activated persulfate oxidation and regeneration of NOMSaturated granular activated carbon, Water Res., 73 (2015) 304–310.
  24. J.C. Lin, M.D.G. de Luna, G.L. Aranzamendez, M.C. Lu, Degradations of acetaminophen via a K2S2O8-doped TiO2 photocatalyst under visible light irradiation, Chemosphere, 155 (2016) 388–394.
  25. S. Dhaka, R. Kumar, M. Ali Khan, K.J. Paeng, M.B. Kurade, S.J. Kim, B.H. Jeon, Aqueous phase degradation of methyl paraben using UV-activated persulfate method, Chem. Eng. J., 321 (2017) 11–19.
  26. Y.-C. Lee, S.-L. Lo, J. Kuo, Y.-L. Lin, Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20–40°C, Chem. Eng. J., 198–199 (2012) 27–32.
  27. S.H. Liang, C.M. Kao, Y.C. Kuo, K.F. Chen, Application of persulfate-releasing barrier to remediate MTBE and benzene contaminated groundwater, J. Hazard. Mater., 185 (2011) 1162–1168.
  28. D. Deng, L. Peng, M. Guan, Y. Kang, Impact of activation methods on persulfate oxidation of methyl tert-butyl ether, J. Hazard. Mater., 264 (2014) 521–528.
  29. S.G. Huling, S. Ko, S. Park, E. Kan, Persulfate oxidation of MTBE-and chloroform-spent granular activated carbon, J. Hazard. Mater., 192 (2011) 1484–1490.
  30. C. Tan, D. Fu, N. Gao, Q. Qin, Y. Xu, H. Xiang, Kinetic degradation of chloramphenicol in water by UV/persulfate system, J. Photochem. Photobiol., A, 332 (2017) 406–412.
  31. C.-D. Dong, M.-L. Tsai, C.-W. Chen, C.-M. Hung, Heterogeneous persulfate oxidation of BTEX and MTBE using Fe3O4−CB magnetite composites and the cytotoxicity of degradation products, Int. Biodeterior. Biodegrad., 124 (2017) 109–118.
  32. H. Guo, T. Ke, N. Gao, Y. Liu, X. Cheng, Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: kinetics, pathways and deactivation, Chem. Eng. J., 316 (2017) 471–480.
  33. C. Cui, L. Jin, Q. Han, K. Lin, S. Lu, D. Zhang, G. Cao, Removal of trace level amounts of twelve sulfonamides from drinking water by UV-activated peroxymonosulfate, Sci. Total Environ., 572 (2016) 244–251.
  34. Y. Liu, X. He, Y. Fu, D.D. Dionysiou, Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate, J. Hazard. Mater., 305 (2016) 229–239.
  35. C.-C. Lin, M.-S. Wu, Degradation of ciprofloxacin by UV/S2O82− process in a large photoreactor, J. Photochem. Photobiol., A, 285 (2014) 1–6.
  36. X. Ao, W. Liu, Degradation of sulfamethoxazole by medium pressure UV and oxidants: peroxymonosulfate, persulfate, and hydrogen peroxide, Chem. Eng. J., 313 (2017) 629–637.
  37. Y. Shiying, W. Ping, Y. Xin, W. Guang, W. Zhang, S. Liang, A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation, J. Environ. Sci., 21 (2009) 1175–1180.
  38. K.-C. Huang, R.A. Couttenye, G.E. Hoag, Kinetics of heatassisted persulfate oxidation of methyl tert-butyl ether (MTBE), Chemosphere, 49 (2002) 413–420.
  39. Q. Hao, X.-R. Xu, S. Li, J.-L. Liu, Y.-Y. Yu, H.-B. Li, Degradation and removal of methyl tert-butyl ether, Int. J. Environ. Bioenergy, 1 (2012) 93–104.
  40. X. He, S.P. Mezyk, I. Michael, D. Fatta-Kassinos, D.D. Dionysiou, Degradation kinetics and mechanism of β-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation, J. Hazard. Mater., 279 (2014) 375–383.
  41. M. Mehrjouei, S. Müller, D. Möller, Removal of fuel oxygenates from water using advanced oxidation technologies by means of falling film reactor, Chem. Eng. J., 211 (2012) 353–359.