References

  1. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  2. Q. Qin, J. Ma, K. Liu, Adsorption of anionic dyes on ammoniumfunctionalized MCM-41, J. Hazard. Mater., 162 (2009) 133–139.
  3. Z. Cai, Y. Sun, W. Liu, F. Pan, P. Sun, J. Fu, An overview of nanomaterials applied for removing dyes from wastewater, Environ. Sci. Pollut. Res., 24 (2017) 15882–15904.
  4. A.R. Cestari, E.F.S. Vieira, G.S. Vieira, L.P. da Costa, A.M.G. Tavares, W. Loh, C. Airoldi, The removal of reactive dyes from aqueous solutions using chemically modified mesoporous silica in the presence of anionic surfactant—The temperature dependence and a thermodynamic multivariate analysis, J. Hazard. Mater., 161 (2009) 307–316.
  5. Y. Zhang, Z.-A. Qiao, Y. Li, Y. Liu, Q. Huo, Cooperative adsorbent based on mesoporous SiO2 for organic pollutants in water, J. Mater. Chem., 21 (2011) 17283.
  6. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359 (1992) 710–712.
  7. L.T. Gibson, Mesosilica materials and organic pollutant adsorption: part B removal from aqueous solution, Chem. Soc. Rev., 43 (2014) 5173–5182.
  8. M. Halina, S. Ramesh, M.A. Yarmo, R.A. Kamarudin, Nonhydrothermal synthesis of mesoporous materials using sodium silicate from coal fly ash, Mater. Chem. Phys., 101 (2007) 344–351.
  9. H. Misran, R. Singh, S. Begum, M.A. Yarmo, M. Ambar, Processing of mesoporous silica materials (MCM-41) from coal fly ash, J. Mater. Process. Technol., 186 (2007) 8–13.
  10. P. Kumar, N. Mal, Y. Oumi, K. Yamana, T. Sano, Mesoporous materials prepared using coal fly ash as the silicon and aluminium source, J. Mater. Chem., 11 (2001) 3285–3290.
  11. G. Chandrasekar, K.-S. You, J.-W. Ahn, W.-S. Ahn, Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash, Microporous Mesoporous Mater., 111 (2008) 455–462.
  12. J. Ding, S. Ma, S. Shen, Z. Xie, S. Zheng, Y. Zhang, Research and industrialization progress of recovering alumina from fly ash: a concise review, Waste Manage, 60 (2017) 375–387.
  13. R.S. Blissett, N.A. Rowson, A review of the multi-component utilisation of coal fly ash, Fuel, 97 (2012) 1–23.
  14. Y.-R. Lee, J.T. Soe, S. Zhang, J.-W. Ahn, M.B. Park, W.-S. Ahn, Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: a mini review, Chem. Eng. J., 317 (2017) 821–843.
  15. J.-E. Park, H.-K. Youn, S.-T. Yang, W.-S. Ahn, CO2 capture and MWCNTs synthesis using mesoporous silica and zeolite 13X collectively prepared from bottom ash, Catal. Today, 190 (2012) 15–22.
  16. A.O. Dhokte, S.L. Khillare, M.K. Lande, B.R. Arbad, Synthesis, characterization of mesoporous silica materials from waste coal fly ash for the classical Mannich reaction, J. Ind. Eng. Chem., 17 (2011) 742–746.
  17. Y. Zhang, L. Kang, J. Shang, H. Gao, A low cost synthesis of fly ash-based mesoporous nanocomposites for production of hydrogen by photocatalytic water-splitting, J. Mater. Sci., 48 (2013) 5571–5578.
  18. D. Li, H. Min, X. Jiang, X. Ran, L. Zou, J. Fan, One-pot synthesis of Aluminum-containing ordered mesoporous silica MCM-41 using coal fly ash for phosphate adsorption, J. Colloid Interface Sci., 404 (2013) 42–48.
  19. G. Qi, X. Lei, L. Li, Y. Sun, C. Yuan, B. Wang, L. Yin, H. Xu, Y. Wang, Coal fly ash-derived mesoporous calcium-silicate material (MCSM) for the efficient removal of Cd(II), Cr(III), Ni(II) and Pb(II) from acidic solutions, Procedia Environ. Sci., 31 (2016) 567–576.
  20. C. Zhou, Q. Gao, W. Luo, Q. Zhou, H. Wang, C. Yan, P. Duan, Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash, J. Taiwan Inst. Chem. Eng., 52 (2015) 147–157.
  21. Q.-c. Yang, S.-h. Ma, S.-l. Zheng, R. Zhang, Recovery of alumina from circulating fluidized bed combustion Al-rich fly ash using mild hydrochemical process, Trans. Nonferrous Met. Soc. China, 24 (2014) 1187–1195.
  22. N. Yuan, Y. Liang, E.S. Erichsen, R. Anwander, Lanthanide complex-incorporated periodic mesoporous organosilica nanospheres with tunable photoluminescence, RSC Adv., 5 (2015) 83368–83376.
  23. M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  24. M. Sari Yilmaz, N. Karamahmut Mermer, Conversion of fly ashes from different regions to mesoporous silica: effect of the mineralogical composition, J. Sol-Gel Sci. Technol., 78 (2016) 239–247.
  25. N. Yuan, Z.W. Liu, L.Y. Wang, B.H. Han, Rattle-type diaminefunctionalized mesoporous silica sphere for carbon dioxide adsorption, J. Nano Res., 53 (2018) 13–21.
  26. K.S. Hui, C.Y.H. Chao, Synthesis of MCM-41 from coal fly ash by a green approach: Influence of synthesis pH, J. Hazard. Mater., 137 (2006) 1135–1148.
  27. M. Anbia, S.A. Hariri, Removal of methylene blue from aqueous solution using nanoporous SBA-3, Desalination, 261 (2010) 61–66.
  28. N.M. Mahmoodi, S. Khorramfar, F. Najafi, Amine-functionalized silica nanoparticle: preparation, characterization and anionic dye removal ability, Desalination, 279 (2011) 61–68.
  29. F. Chen, E. Zhao, T. Kim, J. Wang, G. Hableel, P.J.T. Reardon, S.J. Ananthakrishna, T. Wang, S. Arconada-Alvarez, J.C. Knowles, J.V. Jokerst, Organosilica nanoparticles with an intrinsic secondary amine: an efficient and reusable adsorbent for dyes, ACS Appl. Mater. Interfaces, 9 (2017) 15566–15576.
  30. M. Anbia, S. Salehi, Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous silica SBA-3, Dyes Pigm., 94 (2012) 1–9.
  31. A.H. Karim, A.A. Jalil, S. Triwahyono, S.M. Sidik, N.H.N. Kamarudin, R. Jusoh, N.W.C. Jusoh, B.H. Hameed, Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue, J. Colloid Interface Sci., 386 (2012) 307–314.
  32. A.A. Jalil, S. Triwahyono, S.H. Adam, N.D. Rahim, M.A.A. Aziz, N.H.H. Hairom, N.A.M. Razali, M.A.Z. Abidin, M.K.A. Mohamadiah, Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud, J. Hazard. Mater., 181 (2010) 755–762.
  33. H. Chaudhuri, S. Dash, A. Sarkar, SBA-15 functionalised with high loading of amino or carboxylate groups as selective adsorbent for enhanced removal of toxic dyes from aqueous solution, New J. Chem., 40 (2016) 3622–3634.
  34. R. Han, J. Zhang, P. Han, Y. Wang, Z. Zhao, M. Tang, Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite, Chem. Eng. J., 145 (2009) 496–504.
  35. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  36. I. Langmuir, The constitution and fundamental properties of solids and liquids. II. Liquids, J. Am. Chem. Soc., 39 (1917) 1848–1906.
  37. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  38. H. Freundlish, Uber die Adsorption in Losungen, Zeitschrift Für Phys. Chemie, 57 (1906) 385–470.
  39. H. Freundlich, Of the adsorption of gases. Section II. Kinetics and energetics of gas adsorption, Trans. Faraday Soc., 28 (1931) 195–201.
  40. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physiochim. URSS, 12 (1940) 217–225.
  41. Y. Kim, C. Kim, I. Choi, S. Rengaraj, J. Yi, Arsenic removal using mesoporous alumina prepared via a templating method, Environ. Sci. Technol., 38 (2004) 924–931.
  42. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, K. Sven. Vetenskapsakad. Handl., 24 (1898) 1–39.
  43. Y. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  44. W. Wang, G. Tian, D. Wang, Z. Zhang, Y. Kang, L. Zong, A. Wang, All-into-one strategy to synthesize mesoporous hybrid silicate microspheres from naturally rich red palygorskite clay as high-efficient adsorbents, Sci. Rep., 6 (2016) 39599.