References

  1. A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy powered desalination processes, Renewable Sustainable Energy Rev., 24 (2013) 343–356.
  2. A.L. Zydney, Stagnant film model for concentration polarization in membrane systems, J. Membr. Sci., 130 (1997) 275–281.
  3. D. Bhattacharyya, S.L. Back, R.I. Kermode, M.C. Roco, Prediction of concentration polarization and flux behavior in reverse osmosis by numerical analysis, J. Membr. Sci., 48 (1990) 231–262.
  4. E. Lyster, Y. Cohen, Numerical study of concentration polarization in a rectangular reverse osmosis membrane channel: permeate flux variation and hydrodynamic end effects, J. Membr. Sci., 303 (2007) 140–153.
  5. A.L. Ahmad, K.K. Lau, M.Z.A. Bakar, S.R.A. Shukor, Integrated CFD simulation of concentration polarization in narrow membrane channel, Comput. Chem. Eng., 29 (2005) 2087–2095.
  6. W. Zhang, J. Luo, L. Ding, M.Y. Jaffrin, A review on flux decline control strategies in pressure-driven membrane processes, Ind. Eng. Chem. Res., 54 (2015) 2843–2861.
  7. S.Y. Chen, D. Martinez, R.W. Mei, On boundary conditions in lattice Boltzmann methods, Phys. Fluids., 8 (1996) 2527–2536.
  8. C.K. Aidun, J.R. Clausen, G.W. Woodruff, Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech., 42 (2010) 439–472.
  9. J. Zhang, Lattice Boltzmann method for microfluidics: models and applications, Microfluid. Nanofluid., 10 (2011) 1–28.
  10. Y. Chen, Q. Cai, Z. Xia, M. Wang, S. Chen, Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions, Phys. Rev. E., 88 (2013) 013303.
  11. S.D.C. Walsh, M.O. Saar, Macroscale lattice-Boltzmann methods for low Peclet number solute and heat transport in heterogeneous porous media, Water Resour. Res., 46 (2010) 1–15.
  12. Q. Kang, D. Zhang, S. Chen, X. He, Lattice Boltzmann simulation of chemical dissolution in porous media, Phys. Rev. E., 65 (2002) 036318.
  13. S. Anwar, M.C. Sukop, Lattice Boltzmann models for flow and transport in saturated karst, Groundwater, 47 (2009) 401–413.
  14. J. Kromkamp, A. Bastiaanse, J. Swarts, G. Brans, R.G.M. Van Der Sman, R.M. Boom, A suspension flow model for hydrodynamics and concentration polarisation in crossflow microfiltration, J. Membr. Sci., 253 (2005) 67–79.
  15. D.A.G. Von Der Schulenburg, T.R.R. Pintelon, C. Picioreanu, M.C.M. Van Loosdrecht, M.L. Johns, Three-dimensional simulations of biofilm growth in porous media, AIChE J., 55 (2009) 494–504.
  16. T. Zhang, B. Shi, Z. Guo, Z. Chai, J. Lu, General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method, Phys. Phys. Rev. E., 85 (2012) 016701.
  17. J. Huang, W.-A. Yong, Boundary conditions of the lattice Boltzmann method for convection–diffusion equations, J. Comput. Phys., 300 (2015) 70–91.
  18. Q. Chen, X. Zhang, J. Zhang, Improved treatments for general boundary conditions in the lattice Boltzmann method for convection-diffusion and heat transfer processes, Phys. Rev. E., 88 (2013) 033304.
  19. L. Li, R. Mei, J.F. Klausner, Boundary conditions for thermal lattice Boltzmann equation method, J. Comput. Phys., 237 (2013) 366–395.
  20. I. Ginzburg, Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations, Adv. Water Resour., 28 (2005) 1196–1216.
  21. P.H. Kao, R.J. Yang, An investigation into curved and moving boundary treatments in the lattice Boltzmann method, J. Comput. Phys., 227 (2008) 5671–5690.
  22. M. Yoshino, T. Inamuro, Lattice Boltzmann simulations for flow and heat/mass transfer problems in a three-dimensional porous structure, Int. J. Numer. Methods Fluids, 43 (2003) 183–198.
  23. Z. Guo, T.S. Zhao, Lattice Boltzmann model for incompressible flows through porous media, Phys. Rev. E., 66 (2002) 036304.
  24. S. Chen, G. Doolen, Lattice Boltzmann Method for Fluid Flows, Annu. Rev. Fluid Mech., 30 (1998) 329–364.
  25. R. Huang, H. Wu, A modified multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation, J. Comput. Phys., 274 (2014) 50–63.
  26. Z. Chai, T.S. Zhao, Lattice Boltzmann model for the convection-diffusion equation, Phys. Rev. E, 87 (2013) 063309.
  27. H. Yoshida, M. Nagaoka, Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation, J. Comput. Phys., 229 (2010) 7774–7795.
  28. Q. Kang, P.C. Lichtner, D. Zhang, An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale, Water Resour. Res., 43 (2007) 1–12.
  29. Q. Kang, P.C. Lichtner, D. Zhang, Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media, J. Geophys. Res. Solid Earth., 111 (2006) 1–12.
  30. A. Poisson, A. Papaud, Diffusion coefficients of major ions in seawater, Mar. Chem., 13 (1983) 265–280.
  31. J. Perko, R.A. Patel, Single-relaxation-time lattice Boltzmann scheme for advection-diffusion problems with large diffusion coefficient heterogeneities and high-advection transport, Phys. Rev. E., 89 (2014) 053309.
  32. W. Li, X. Su, A. Palazzolo, S. Ahmed, E. Thomas, Reverse osmosis membrane, seawater desalination with vibration assisted reduced inorganic fouling, Desalination, 417 (2017) 102–114.
  33. H.-B. Huang, X.-Y. Lu, M.C. Sukop, Numerical study of lattice Boltzmann methods for a convection–diffusion equation coupled with Navier–Stokes equations, J. Phys. A: Math. Theor., 44 (2011) 055001.
  34. L. Song, S. Ma, Numerical studies of the impact of spacer geometry on concentration polarization in spiral wound membrane modules, Ind. Eng. Chem. Res., 44 (2005) 7638–7645.
  35. H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff: the trade-off between membrane permeability and selectivity, Science, 356 (2017) 1138–1148.
  36. W. Li, X. Su, A. Palazzolo, S. Ahmed, Numerical modeling of concentration polarization and inorganic fouling growth in the pressure-driven membrane filtration process, J. Membr. Sci., 569 (2019) 71–82.
  37. Q. Kang, D. Zhang, P.C. Lichtner, I.N. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophys. Res. Lett., 31 (2004) 1–5.
  38. M. Uchymiak, E. Lyster, J. Glater, Y. Cohen, Kinetics of gypsum crystal growth on a reverse osmosis membrane, J. Membr. Sci., 314 (2008) 163–172.