References

  1. C. Chiellini, R. Gori, A. Tiezzi, L. Brusetti, S. Pucciarelli, E. D’Amato, A. Chiavola, P. Sirini, C. Lubello, G. Petroni, Ozonation effects for excess sludge reduction on bacterial communities composition in a full-scale activated sludge plant for domestic wastewater treatment, Environ. Technol., 35 (2014) 1462–1469.
  2. M. Fazelipour, A. Takdastan, M.S.S. Jou, Survey on chlorine application in sequencing batch reactor waste sludge in order to sludge minimization, Asian J. Chem., 23 (2011) 2994.
  3. A. Takdastan, N. Mehrdadi, A.A. Azimi, A. Torabian, G. Nabi Bidhendi, Investigation of the excess sludge reduction in SBR by oxidizing some sludge by ozone, Iran. J. Chem. Eng., 28 (2009) 95–104.
  4. N. Hvala, D. Vrečko, C. Bordon, Plant-wide modelling for assessment and optimization of upgraded full-scale wastewater treatment plant performance, Water Pract. Technol., 13 (2018) 566–582.
  5. A.R. Rahmani, D. Nematollahi, K. Godini, G. Azarian, Continuous thickening of activated sludge by electro-flotation, Sep. Purif. Technol., 107 (2013) 166–171.
  6. P. Romero, M.D. Coello, C.A. Aragón, P. Battistoni, A.L. Eusebi, Sludge reduction through ozonation: effects of different specific dosages and operative management aspects in a full-scale study, J. Environ. Eng., 141 (2015) 15040–15043.
  7. K. Svensson, Appendix D – Scientific Article: Reduction of Excess Sludge Production by Ozonation, Department of Water and Environmental Engineering, Lunds Institute of Technology, Lund University, Sweden, 2006.
  8. J. Chacana, M.-A. Labelle, A. Laporte, A. Gadbois, B. Barbeau, Y. Comeau, Ozonation of primary sludge and digested sludge to increase methane production in a chemically enhanced primary treatment facility, Ozone Sci. Eng., 39 (2017) 148–158.
  9. M. Pazoki, A. Takdastan, N. Jaafarzadeh, Investigation of minimization of excess sludge production in sequencing batch reactor by heating some sludge, Asian J. Chem., 22 (2010) 1751.
  10. G. Andreottola, P. Foladori, A review and assessment of emerging technologies for the minimization of excess sludge production in wastewater treatment plants, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 41 (2006) 1853–1872.
  11. E. Paul, Q.-S. Liu, Y. Liu, Reduction of Excess Sludge Production Using Ozonation or Chlorination: Performance and Mechanisms of Action, E. Paul, Y. Liu, Eds., Biological Sludge Minimization and Biomaterials/Bioenergy Recovery Technologies, 2012, pp. 209–248.
  12. C.A. Mason, G. Hamer, J.D. Bryers, The death and lysis of microorganisms in environmental processes, FEMS Microbiol. Lett., 39 (1986) 373–401.
  13. D. Ramakrishna, Strategies for sludge minimization in activated sludge process - a review, Biotechnol. Adv., 19 (2005) 97–107.
  14. A.F. Gaudy Jr., P.Y. Yang, A.W. Obayashi, Studies on the total oxidation of activated sludge with and without hydrolytic pretreatment, J. Water Pollut. Control Fed., 43 (1971) 40–54.
  15. J. Van Leeuwen, Improved sewage treatment with ozonated activated sludge, Water Environ. J., 2 (1988) 493–499.
  16. H. Yasui, K. Nakamura, S. Sakuma, M. Iwasaki, Y. Sakai, A fullscale operation of a novel activated sludge process without excess sludge production, Water Sci. Technol., 34 (1996) 395–404.
  17. F. Nilsson, Application of Ozone in Wastewater Treatment: Oxidation of Pharmaceuticals and Filamentous Bulking Sludge, Lund University Publications, 2017.
  18. S. Sankaran, S.K. Khanal, A.L. Pometto III, J.H. van Leeuwen, Ozone as a selective disinfectant for nonaseptic fungal cultivation on corn-processing wastewater, Bioresour. Technol., 99 (2008) 8265–8272.
  19. J.W. Lee, H.-Y. Cha, K.Y. Park, K.-G. Song, K.-H. Ahn, Operational strategies for an activated sludge process in conjunction with ozone oxidation for zero excess sludge production during winter season, Water Res., 39 (2005) 1199–1204.
  20. P. Vergine, G. Menin, R. Canziani, E. Ficara, M. Fabiyi, R. Novak, A. Sandon, A. Bianchi, G. Bergna, Partial Ozonation of Activated Sludge to Reduce Excess Sludge Production: Evaluation of Effects on Biomass Activity in a Full Scale Demonstration Test, In: International Water Association Specialist Conference, Moncton, Canada, 2007, pp. 295–302.
  21. C. Lin, J. Liao, H. Wu, C. Wei, Mechanism of ozone oxidation of polycyclic aromatic hydrocarbons during the reduction of coking wastewater sludge, CLEAN–Soil, Air, Water, 44 (2016) 1499–1507.
  22. Z. Wang, L. Wang, B.Z. Wang, Y.F. Jiang, S. Liu, Bench-scale study on zero excess activated sludge production process coupled with ozonation unit in membrane bioreactor, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 43 (2008) 1325–1332.
  23. S. Isazadeh, L.E.U. Rivas, P.O. Ozcer, D. Frigon, Reduction of waste biosolids by RAS-ozonation: model validation and sensitivity analysis for biosolids reduction and nitrification, Environ. Modell. Software, 65 (2015) 41–49.
  24. Gh. Asgari, S. Akbari, J. Faradmal, H. Almasi, Z. Daraee, Removal of methylene blue dye from wastewater of textile industry in catalytic ozonation process by pumice modified by magnesium nitrate, J. Rafsanjan Univ. Med. Sci., 15 (2017) 1095–1106.
  25. G.U. Semblante, F.I. Hai, D.D. Dionysiou, K. Fukushi, W.E. Price, L.D. Nghiem, Holistic sludge management through ozonation: a critical review, Iran. J. Environ. Manage., 185 (2017) 79–95.
  26. Y. Wei, R.T. Van Houten, A.R. Borger, D.H. Eikelboom, Y. Fan, Minimization of excess sludge production for biological wastewater treatment, Water Res., 37 (2003) 4453–4467.
  27. A. Rahmani, G. Asgar, F. Samiee, Evaluation of performance catalytic ozonation with activated Alumina in the removal of pentachlorophenol from aqueous solutions and study of the intermediates, Avicenna J. Clin. Med., 20 (2013) 77–85.
  28. M. Torregrossa, G. Di Bella, D. Di Trapani, Comparison between ozonation and the OSA process: analysis of excess sludge reduction and biomass activity in two different pilot plants, Water Sci. Technol., 66 (2012) 185–192.
  29. G. Moussavi, H. Asilian, A. Jamal, Effect of ozonation on reduction of volume and mass of waste activated sludge, Appl. Sci. Res., 4 (2008) 122–127.
  30. A. Chiavola, M. Naso, E. Rolle, D. Trombetta, Effect of ozonation on sludge reduction in a SBR plant, Water Sci. Technol., 56 (2007) 157–165.
  31. M.B. Miranzadeh, A. Mazaheri-Tehrani, Z. Tavakoli, H.R. Gilasi, Comparing the efficiency of fenton and ozonation with Fentoozonation process in excess sludge reduction, J. Mazandaran Univ. Med. Sci., 25 (2016) 166–176.
  32. Y. Chen, W. Zhang, Y. Feng, Q. Huang, S. Shen, Sludge reduction in the activated sludge process strengthened by enhanced ozonation oxidation, Water Environ. Res., 89 (2017) 763–768.
  33. T. Kamiya, J. Hirotsuji, New combined system of biological process and intermittent ozonation for advanced wastewater treatment, Water Sci. Technol., 38 (1998) 145–153.
  34. O. Demir, A. Filibeli, Effects of partial ozonation on activated sludge process for the minimization of excess sludge production during biological treatment, Desal. Wat. Treat, 52 (2014) 3063–3075.
  35. M. Salhi, D. Déléris, H. Debellefontaine, P. Ginestet, E. Paul, More Insights into the Understanding of Reduction of Excess Sludge Production by Ozone, In: IWA International Conference on Biosolids, Wastewater Sludge as a Resource, 2003, pp. 23–25.
  36. P. Mahmoudi, A. Takdastan, N. Alavi, A.A.J. Mosavi, N. Kaydi, Study of excess sludge reduction in conventional activated sludge process by heating returned sludge, Asian J. Chem., 25 (2013) 2627.
  37. M. Ehsanifar, A. Jonidi Jafari, M. Shirzad Siboni, Z. Asadgol, H. Arfaeinia, Effect of ozonation and hydrogen peroxide on reducing the volume and chemical oxygen demand of waste water treatment plants sludge, Caspian J. Health Res., 3 (2018) 15–19.
  38. S. Vaxelaire, E. Gonze, G. Merlin, Y. Gonthier, Reduction by sonication of excess sludge production in a conventional activated sludge system: continuous flow and lab‐scale reactor, Environ. Technol., 29 (2008) 1307–1320.
  39. J. Hong, Yield coefficients for cell mass and product formation, Biotechnol. Bioeng., 33 (1989) 506–507.
  40. A. Häner, C.A. Mason, G. Hamer, Death and lysis during aerobic thermophilic sludge treatment: characterization of recalcitrant products, Water Res., 28 (1994) 863–869.
  41. A. Takdastan, A. Eslami, Application of energy spilling mechanism by para-nitrophenol in biological excess sludge reduction in batch-activated sludge reactor, Int. J. Energy Environ. Eng., 4 (2013) 26.
  42. M.H. Al-Malack, Determination of biokinetic coefficients of an immersed membrane bioreactor, J. Membr. Sci., 271 (2006) 47–58.
  43. W. Saktaywin, H. Tsuno, H. Nagare, T. Soyama, J. Weerapakkaroon, Advanced sewage treatment process with excess sludge reduction and phosphorus recovery, Water Res., 39 (2005) 902–910.
  44. M. Hajsardar, A. Takdastan, M. Ahmadi, A.H. Hasani, Study of reducing waste biosolids in sequencing batch reactor by ozonation to waste biosolids, Asian J. Chem., 23 (2011) 3615.
  45. S. Pérez-Elvira, P.N. Diez, F. Fdz-Polanco, Sludge minimization technologies–an overview, Rev. Environ. Sci. Biotechnol., 5 (2006) 375–398.
  46. M.W. Miller, J. DeArmond, M. Elliott, M. Kinyua, D. Kinnear, B. Wett, S. Murthy, C.B. Bott, Settling and dewatering characteristics of an A-stage activated sludge process proceeded by shortcut biological nitrogen removal, Int. J. Water Wastewater Treat., 2 (2016) 1–8.
  47. M. Ötker, I.A. Balcıoğlu, Ozonation of enrofloxacin in solid and liquid phase, in: International Conference Ozone and UV, Bogazici University, Istanbul/Turkey, 2006, pp. 57–61.
  48. C.-d. Gao, E.-l. Jiao, H. Li, W.-x. Wang, S.-y. Wang, Filamentous sludge bulking in a/o process treating domestic sewage of low carbon/nitrogen ratio, Fresenius Environ. Bull., 22 (2013) 3607–3613.
  49. M. Marce, O. Palacios, A. Bartolomé, J. Caixach, S. Baig, S. Esplugas, Application of ozone on activated sludge: micropollutant removal and sludge quality, Ozone Sci. Eng., 39 (2017) 319–332.
  50. A. Caravelli, L. Giannuzzi, N. Zaritzky, Effect of ozone on filamentous bulking in a laboratory scale activated sludge reactor using respirometry and INT-dehydrogenase activity, J. Environ. Eng., 132 (2006) 1001–1010.
  51. E. Paul, Y. Liu, Biological Sludge Minimization and Biomaterials/ Bioenergy Recovery Technologies, John Wiley & Sons, 2012, p. 160.
  52. O. Järvik, S. Kamenev, K. Kasemets, I. Kamenev, Effect of ozone on viability of activated sludge detected by oxygen uptake rate (OUR) and adenosine-5'-triphosphate (ATP) measurement, Ozone Sci. Eng., 32 (2010) 408–416.
  53. C. Fall, B.C. Silva-Hernández, C.M. Hooijmans, C.M. Lopez- Vazquez, M. Esparza-Soto, M. Lucero-Chávez, M.C.M. van Loosdrecht, Sludge reduction by ozone: insights and modeling of the dose-response effects, Iran. J. Environ. Manage., 206 (2018) 103–112.
  54. Y.X. Zhao, J. Yin, H.L. Yu, N. Han, F.J. Tian, Observations on ozone treatment of excess sludge, Water Sci. Technol., 56 (2007) 167–175.
  55. P. Van Aken, K. Van Eyck, D. Maertens, J. Degrève, S. Liers, J. Luyten, Biodegradability Assessment of Advanced Oxidation Processes by Means of Respirometric Measurements, Conference Series on Oxidation Technologies for Water and Wastewater Treatment, Germany, 2012.
  56. Y. Liu, Chemically reduced excess sludge production in the activated sludge process, Chemosphere, 50 (2003) 1–7.
  57. A. Huysmans, M. Weemaes, P.A. Fonseca, W. Verstraete, Ozonation of activated sludge in the recycle stream, J. Chem. Technol. Biotechnol., 76 (2001) 321–324.
  58. A. Murray, A. Horvath, K.L. Nelson, Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: a case study from China, Environ. Sci. Technol., 42 (2008) 3163–3169.
  59. A. Chiavola, E. D’Amato, R. Gori, C. Lubello, P. Sirini, Technoeconomic evaluation of the application of ozone-oxidation in a full-scale aerobic digestion plant, Chemosphere, 91 (2013) 656–662.
  60. M. Muz, M.S. Ak, O.T. Komesli, C.F. Gökçay, Intermittent ozone application in aerobic sludge digestion, Ozone Sci. Eng., 36 (2014) 57–64.
  61. A. Rahmani, E. Hossieni, A. Poormohammadi, Removal of chromium (VI) from aqueous solution using electro-Fenton process, Environ. Process., 2 (2015) 419–428.