References

  1. M. Deng, X.D. Wu, A.M. Zhu, Q.G. Zhang, Q.L. Liu, Well-dispersed TiO2 nanoparticles anchored on Fe3O4 magnetic nanosheets for efficient arsenic removal, J. Environ. Manage., 237 (2019) 63–74.
  2. Y.N. Chen, C.S. Xiong, Adsorptive removal of As(III) ions from water using spent grain modified by polyacrylamide, J. Environ. Sci., 45 (2016) 124–130.
  3. Y. Yu, L. Yu, K.Y. Koh, C.H. Wang, J.P. Chen, Rare-earth metal based adsorbents for effective removal of arsenic from water: a critical review, Crit. Rev. Env. Sci. Technol., 48 (2018) 1127–1164.
  4. D.L. Wu, Y. Zong, Z.Y. Tian, B.B. Shao, Role of reactive oxygen species in As(III) oxidation by carbonate structural Fe(II): a surface-mediated pathway, Chem. Eng. J., 368 (2019) 980–987.
  5. Y.X. Deng, Y.T. Li, X.J. Li, Y. Sun, J. Ma, M. Lei, L.P. Weng, Influence of calcium and phosphate on pH dependency of arsenite and arsenate adsorption to goethite, Chemosphere, 119 (2018) 617–624.
  6. R. Sridar, U.U. Ramanane, M. Rajasimman, Synthesis, characterization of ZVI nanoparticles and its application for the removal of phenol from wastewater, Desal. Wat. Treat., 122 (2018) 42–49.
  7. A.A.H. Faisal, T.R. Abbas, S.H. Jassam, Removal of zinc from contaminated groundwater by zero-valent iron permeable reactive barrier, Desal. Wat. Treat., 55 (2015) 1586–1597.
  8. M. Gil-Diaz, J. Alonso, E. Rodríguez-Valdés, J.R. Gallego, M.C. Lobo, Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil, Sci. Total Environ., 584 (2017) 1324–1332.
  9. X.J. Guo, Z. Yang, H. Liu, X.F. Lv, Q.S. Tu, Q.D. Ren, X.H. Xia, C.Y. Jing, Common oxidants activate the reactivity of zerovalent iron (ZVI) and hence remarkably enhance nitrate reduction from water, Sep. Purif. Technol., 146 (2015) 227–234.
  10. L. Xu, Y.H. Huang, Kinetics and mechanism of selenite reduction by zero valent iron under anaerobic condition activated and enhanced by dissolved Fe(II), Sci. Total Environ., 664 (2019) 698–706.
  11. P. Drzewicz, L. Perez-Estrada, A. Alpatova, J.W. Martin, M.G. El-Din, Impact of peroxydisulfate in the presence of zero valent iron on the oxidation of cyclohexanoic acid and naphthenic acids from oil sands process-affected water, Environ. Sci. Technol., 46 (2012) 8984–8991.
  12. J.S. Du, B. Sun, J. Zhang, X.H. Guan, Parabola-like shaped pH-rate profile for phenols oxidation by aqueous permanganate, Environ. Sci. Technol., 46 (2012) 8860–8867.
  13. M.R. Samaei, H. Maleknia, A. Azhdarpoor, A comparative study of removal of methyl tertiary-butyl ether (MTBE) from aquatic environments through advanced oxidation methods of H2O2/nZVI, H2O2/nZVI/ultrasound, and H2O2/nZVI/UV, Desal. Wat. Treat., 57 (2016) 21417–21427.
  14. M. Tong, S.H. Yuan, P. Zhang, P. Liao, A.N. Alshawabkeh, X.J. Xie, Y.X. Wang, Electrochemically induced oxidative precipitation of Fe(II) for As(III) oxidation and removal in synthetic groundwater, Environ. Sci. Technol., 48 (2014) 5145–5153.
  15. B. Sun, X.H. Guan, J.Y. Fang, P.G. Tratnyek, Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants: the involvement of Mn(III), Environ. Sci. Technol., 49 (2015) 12414–12421.
  16. G. Han, C. Wei, Permanganate with a double-edge role in photodegradation of sulfamethoxazole: kinetic, reaction mechanism and toxicity, Chemosphere, 191 (2018) 494–502.
  17. X.J. Guo, Z. Yang, H.Y. Dong, X.H. Guan, Q.D. Ren, X.F. Lv, X. Jin, Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water, Water Res., 88 (2016) 671–680.
  18. Z. Wang, J. Jiang, S.Y. Pang, Y. Zhou, C.T. Guan, Y. Gao, J. Li, Y. Yang, W. Qiu, C.C. Jiang, Is sulfate radical really generated from peroxydisulfate activated by iron(II) for environmental decontamination?, Environ. Sci. Technol., 52 (2018) 11276–11284.
  19. Z.L. Chen, K.F. Akter, M.M. Rahman, R. Naidu, The separation of arsenic species in soils and plant tissues by anion-exchange chromatography with inductively coupled mass spectrometry using various mobile phases, Microchem. J., 89 (2008) 20–28.
  20. T.Y. Liu, Y.L. Yang, Z.-L. Wang, Y.Q. Sun, Remediation of arsenic(III) from aqueous solutions using improved nanoscale zero-valent iron on pumice, Chem. Eng. J., 288 (2016) 739–744.
  21. K. Xu, W.W. Ben, W.C. Ling, Y. Zhang, J.H. Qu, Z.M. Qiang, Impact of humic acid on the degradation of levofloxacin by aqueous permanganate: kinetics and mechanism, Water Res., 123 (2017) 67–74.
  22. J.X. Li, H.J. Qin, X.H Guan, Premagnetization for enhancing the reactivity of multiple zero-valent iron samples toward various contaminants, Environ. Sci. Technol., 49 (2015) 14401–14408.
  23. X.L. Shi, N.S. Dalal, V. Vallyathan, ESR evidence for the hydroxyl radical formation in aqueous suspension of quartz particles and its possible significance to lipid peroxidation in silicosis, J. Toxicol. Environ. Health, 25 (1988) 237–245.
  24. Y.-G. Kang, H. Yoon, W. Lee, E.-J. Kim, Y.-S. Chang, Comparative study of peroxide oxidants activated by nZVI: removal of 1,4-dioxane and arsenic(III) in contaminated waters, Chem. Eng. J., 334 (2018) 2511–2519.
  25. G. Crini, H.N. Peindy, F. Gimbert, C. Robert, Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies, Sep. Purif. Technol., 53 (2007) 97–110.
  26. S.R. Kanel, B. Manning, L. Charlet, H. Choi, Removal of arsenic (III) from groundwater by nanoscale zero-valent iron, Environ. Sci. Technol., 39 (2005) 1291–1298.
  27. L. Ling, W.-x. Zhang, Visualizing arsenate reactions and encapsulation in a single zero-valent iron nanoparticle, Environ. Sci. Technol., 51 (2017) 2288–2294.
  28. X.Y. Huang, L. Ling, W.X. Zhang, Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: high resolution chemical mapping of the passivation layer, J. Environ. Sci., 67 (2018) 4–13.
  29. T.Y. Liu, Z.L. Wang, L. Zhao, X. Yang, Enhanced chitosan/Fe0-nanoparticles beads for hexavalent chromium removal from wastewater, Chem. Eng. J., 189–190 (2012) 196–202.
  30. T.Y. Liu, X. Yang, Z.L. Wang, X.X. Yan, Enhanced chitosan beads-supported Fe0-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers, Water Res., 47 (2013) 6691–6700.
  31. E. Beyreuther, S. Grafström, L.M. Eng, C. Thiele, K. Dörr, XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content, Phys. Rev., 73 (2006) 155425.
  32. S.R. Kanel, J.-M. Grenèche, H. Choi, Arsenic(V) removal from groundwater using nanoscale zero-valent iron as a colloidal reactive barrier material, Environ. Sci. Technol., 40 (2006) 2045–2050.
  33. C. Su, R.W. Puls, Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation, Environ. Sci. Technol., 35 (2001) 1487–1492.
  34. S.J. Hug, O. Leupin, Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction, Environ. Sci. Technol., 37 (2003) 2734–2742.
  35. J. Farrell, J.P. Wang, P. O’Day, M. Conklin, Electrochemical and spectroscopic study of arsenate removal from water using zerovalent iron media, Environ. Sci. Technol., 35 (2001) 2026–2032.
  36. I.A. Katsoyiannis, T. Ruettimann, S.J. Hug, Response to “comment on ‘pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water’”, Environ. Sci. Technol., 43 (2009) 3980–3981.
  37. R. Woods, I.M. Kolthoff, E.J. Meehan, Arsenic (IV) as an intermediate in the induced oxidation of As (III) by the iron (II)-hydrogen peroxide reaction, J. Am. Chem. Soc., 86 (1964) 1698–1700.
  38. G.D. Mao, P.D. Thomas, M.J. Poznansky, Oxidation of spin trap 5,5-dimethyl-1-pyrroline-1-oxide in an electron paramagnetic resonance study of the reaction of methemoglobin with hydrogen peroxide, Free Radical Biol. Med., 16 (1994) 493–500.
  39. W.D. Zhang, C. Wang, Z.J. Li, Z.Z. Lu, Y.Y. Li, J.-J. Yin, Y.-T. Zhou, X.F. Gao, Y. Fang, G.J. Nie, Y.L. Zhao, Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism, Adv. Mater., 24 (2012) 5391–5397.