References

  1. J. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv., 27 (2009) 195–226.
  2. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
  3. A. Abdolali, H.H. Ngo, W. Guo, J.L. Zhou, B. Du, Q. Wei, X.C. Wang, P.D. Nguyen, Characterization of a multi-metal binding biosorbent: chemical modification and desorption studies, Bioresour. Technol., 193 (2015) 477–487.
  4. I.-H. Liao, J.-H. Huang, S.-L. Wang, M.-P. Cheng, J.-C. Liu, Adsorptions of Cd(II) and Pb(II) in aqueous solution by ricestraw char, Desal. Wat. Treat., 57 (2016) 21619–21626.
  5. C.K. Jain, D.S. Malik, A.K. Yadav, Applicability of plant based biosorbents in the removal of heavy metals: a review, Environ. Process., 3 (2016) 495–523.
  6. V. Javanbakht, S.A. Alavi, H. Zilouei, Mechanisms of heavy metal removal using microorganisms as biosorbent, Water Sci. Technol., 69 (2014) 1775–1787.
  7. Y. Qie, J. Wang, W. Zhou, B. Gao, Y. Zhang, Evaluation of a deep-sea mesophilic bacteria exopolysaccharides in removal of low concentration Pb(II) from aqueous medium, Desal. Wat. Treat., 28 (2011) 174–182.
  8. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment, Mol. Clin. Environ. Toxicol., 101 (2012) 133–164.
  9. F. Pagnanelli, S. Mainelli, F. Veglio, L. Toro, Heavy metal removal by olive pomace: biosorbent characterisation and equilibrium modelling, Chem. Eng. Sci., 58 (2003) 4709–4717.
  10. M.A. Martin-Lara, F. Pagnanelli, S. Mainelli, M. Calero, L. Toro, Chemical treatment of olive pomace: effect on acid-basic properties and metal biosorption capacity, J. Hazard. Mater., 156 (2008) 448–457.
  11. M.A. Martin-Lara, G. Blazquez, A. Ronda, A. Pérez, M. Calero, Development and characterization of biosorbents to remove heavy metals from aqueous solutions by chemical treatment of olive stone, Ind. Eng. Chem. Res., 52 (2013) 10809–10819.
  12. A.L. Fernando, S. Monteiro, F. Pinto, B.S. Mendes, Production of biosorbents from waste olive cake and its adsorption characteristics for Zn2+ ion, Sustainability, 1 (2009) 277–297.
  13. A. Aziz, M.S. Ouali, E.H. Elandaloussi, L.Ch. De Menorval, M. Lindheimer, Chemically modified olive stone: a low-cost sorbent for heavy metals and basic dyes removal from aqueous solutions, J. Hazard. Mater., 163 (2009) 441–447.
  14. A. Ronda, M.A. Martin-Lara, G. Blázquez, N.M. Bachs, M. Calero, Copper biosorption in the presence of lead onto olive stone and pine bark in batch and continuous systems, Environ. Prog. Sustainable Energy, 33 (2013) 192–204.
  15. M.A. Shouman, N.A. Fathy, S.A. Khedr, A.A. Attia, Comparative biosorption studies of hexavalent chromium ion onto raw and modified palm branches, Adv. Phys. Chem., 2013 (2013) 9 p, doi.org/10.1155/2013/159712
  16. S.L. Goertzen, K.D. Thériault, A.M. Oickle, A.C. Tarasuk, H.A. Andreas, Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination, Carbon, 48 (2010) 1252–1261.
  17. N.M. Hilal, A.A. Emam, A.A. El-Bayaa, N.A. Badawy, A.E. Zidan, Adsorption of barium and iron ions from aqueous solutions by the activated carbon produced from mazot ash, Life Sci. J., 10 (2013) 75–83.
  18. S. Lagergren, About the theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad. Handl., 24 (1898) 1–39.
  19. Y.S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto Sphagnum moss peat, Water Res., 34 (2000) 735–742.
  20. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div., 89 (1963) 31–60.
  21. E.S. Dragan, D. Humelnicu, M.V. Dinu, R.I. Olariu, Kinetics, equilibrium modelling, and thermodynamics on removal of Cr(VI) ions from aqueous solution using novel composites with strong base anion exchanger microspheres embedded into chitosan/poly(vinyl amine) cryogels, Chem. Eng. J., 330 (2017) 675–691.
  22. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  23. S.K. Papageorgiou, F.K. Katsaros, E.P. Kouvelos, N.K. Kanellopoulos, Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data, J. Hazard. Mater., 162 (2009) 1347–1354.
  24. V.C. Srivastava, I.D. Mall, I.M. Mishra, Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash, Chem. Eng. J., 117 (2006) 79–91.
  25. H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.-P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res., 120 (2017) 88–116.
  26. H.K. Goering, P.J. Van Soest, Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications), US Government Printing Office, Washington, D.C., 1970.
  27. M. Mahmood-ul-Hassan, V. Suthar, E. Rafique, R. Ahmad, M. Yasin, Kinetics of cadmium, chromium, and lead sorption onto chemically modified sugarcane bagasse and wheat straw, Environ. Monit. Assess., 187 (2015) 470.
  28. W.S. Trahanovsky, Oxidation in Organic Chemistry: Organic Chemistry, A Series of Monographs, Academic Press, New York, 1982.
  29. N.A. Medellin-Castillo, E. Padilla-Ortega, M.C. Regules-Martínez, R. Leyva-Ramos, R. Ocampo-Pérez, C. Carranza-Alvarez, Single and competitive adsorption of Cd(II) and Pb(II) ions from aqueous solutions onto industrial chili seeds (Capsicum annuum) waste, Sustainable Environ. Res., 27 (2017) 61–69.
  30. N. Feng, X. Guo, S. Liang, Adsorption study of copper (II) by chemically modified orange peel, J. Hazard. Mater., 164 (2009) 1286–1292.
  31. M. Kostić, M. Radović, J. Mitrović, M. Antonijević, D. Bojić, M. Petrović, A. Bojić, Using xanthated Lagenaria vulgaris shell biosorbent for removal of Pb(II) ions from wastewater, J. Iran. Chem. Soc., 11 (2014) 565–578.
  32. I. Anastopoulos, M. Panagiotou, C. Ehaliotis, P.A. Tarantilis, I. Massas, NaOH pretreatment of compost derived from olive tree pruning waste biomass greatly improves biosorbent characteristics for the removal of Pb2+ and Ni2+ from aqueous solutions, Chem. Ecol., 31 (2015) 724–740.
  33. C.G. Boeriu, D. Bravo, R.J.A. Gosselink, J.E.G. van Dam, Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy, Ind. Crops Prod., 20 (2004) 205–218.
  34. V.K. Gupta, A. Rastogi, Biosorption of lead from aqueous solutions by green algae spirogyra species: kinetics and equilibrium studies, J. Hazard. Mater., 152 (2008) 407–414.
  35. H. Qiu, L.V. Lu, B.-C. Pan, Q.-J. Zhang, W.-M. Zhang, Q.-X. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ. Sci. A, 10 (2009) 716–724.
  36. M. Sanchez-Polo, J. Rivera-Utrilla, Adsorbent-adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons, Environ. Sci. Technol., 36 (2002) 3850–3854.
  37. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 11 p. doi.org/10.1155/2017/3039817
  38. W.M. Ibrahim, Biosorption of heavy metal ions from aqueous solution by red macroalgae, J. Hazard. Mater., 192 (2011) 1827–1835.
  39. E. Pehlivan, B.H. Yanik, G. Ahmetli, M. Pehlivan, Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp, Bioresour. Technol., 99 (2008) 3520–3527.
  40. S. Doyurum, A. Çelik, Pb(II) and Cd(II) removal from aqueous solutions by olive cake, J. Hazard. Mater., 138 (2006) 22–28.
  41. G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, M. Krimissa, Sorption isotherms: a review on physical bases, modeling and measurement, Appl. Geochem., 22 (2007) 249–275.
  42. Q. Li, S. Wu, G. Liu, X. Liao, X. Deng, D. Sun, Y. Hu, Y. Huang, Simultaneous biosorption of cadmium(II) and lead(II) ions by pretreated biomass of Phanerochaete chrysosporium, Sep. Purif. Technol., 34 (2004) 135–142.