References
- World Health Organization (WHO), UNICEF, Global Water
Supply and Sanitation Assessment 2000 Report, WHO, Geneva,
Switzerland, 2000.
- A.T. Wolf, Water and human security, J. Contemp. Water Res.
Educ., 118 (2001) 29–37.
- World Health Organization (WHO), Guidelines for Drinking
Water Quality, Surveillance and Control of Community
Supplies, Vol. 3, 2nd ed., WHO, Geneva, 1997.
- S. Yang, J.-S. Gu, H.-Y. Yu, J. Zhou, S.-F. Li, X.-M. Wu,
L. Wang, Polypropylene membrane surface modification
by RAFT grafting polymerization and TiO2 photocatalysts
immobilization for phenol decomposition in a photocatalytic
membrane reactor, Sep. Purif. Technol., 83 (2011) 157–165.
- R. Mu, Z. Xu, L. Li, Y. Shao, H. Wan, S. Zheng, On the
photocatalytic properties of elongated TiO2 nanoparticles for
phenol degradation and Cr(VI) reduction, J. Hazard. Mater.,
176 (2010) 495–502.
- N.M. Mahmoodi, M. Arami, N.Y. Limaee, Photocatalytic
degradation of triazinic ring-containing azo dye (Reactive
Red 198) by using immobilized TiO2 photoreactor: bench scale
study, J. Hazard. Mater., 133 (2006) 113–118.
- Y. Zhang, D. Wang, G. Zhang, Photocatalytic degradation of
organic contaminants by TiO2/sepiolite composites prepared
at low temperature, Chem. Eng. J., 173 (2011) 1–10.
- H.A. Le, L.T. Linh, S. Chin, J. Jurng, Photocatalytic degradation
of methylene blue by a combination of TiO2-anatase and coconut
shell activated carbon, Powder Technol., 225 (2012) 167–175.
- S.-y. Lu, D. Wu, Q.-l. Wang, J. Yan, A.G. Buekens, K.-f. Cen,
Photocatalytic decomposition on nano-TiO2: destruction
of chloroaromatic compounds, Chemosphere, 82 (2011)
1215–1224.
- H. Lee, J. Choi, S. Lee, S.-T. Yun, C. Lee, J. Lee, Kinetic
enhancement in Photocatalytic oxidation of organic compounds
by WO3 in the presence of Fenton-like reagent, Appl. Catal., B,
138–139 (2013) 311–317.
- X. Gao, X. Su, C. Yang, F. Xiao, J. Wang, X. Cao, S. Wang, L. Zhang,
Hydrothermal synthesis of WO3 nanoplates as highly sensitive
cyclohexene sensor and high-efficiency MB photocatalyst, Sens.
Actuators, B, 181 (2013) 537–543.
- Z. Miao, S. Tao, Y. Wang, Y. Yu, C. Meng, Y. An, Hierarchically
porous silica as an efficient catalyst carrier for high performance
vis-light assisted Fenton degradation, Microporous Mesoporous
Mater., 176 (2013) 178–185.
- Y.J. Zhang, L.C. Liu, L.L. Ni, B.L. Wang, A facile and low-cost
synthesis of granulated blast furnace slag-based cementitious
material coupled with Fe2O3 Catalyst for treatment of dye
wastewater, Appl. Catal., B, 138–139 (2013) 9–16.
- V.K. Gupta, D. Pathania, S. Agarwal, P. Singh, Adsorptional
photocatalytic degradation of methylene blue onto pectin-CuS
nanocomposite under solar light, J. Hazard. Mater., 243 (2012)
179–186.
- S. Liu, X. Wang, W. Zhao, K. Wang, H. Sang, Z. He, Synthesis,
characterization and enhanced photocatalytic performance of
Ag2S-coupled ZnO/Zn Score/shell nanorods, J. Alloys Compd.,
568 (2013) 84–91.
- S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr., Efficient photochemical
water splitting by a chemically modified n-TiO2,
Science, 297 (2002) 2243–2245.
- Y.A. Shaban, S.U.M. Khan, Visible light active carbon
modified n-TiO2 for efficient hydrogen production by photoelectrochemical
splitting of water, Int. J. Hydrogen Energy,
33 (2008) 1118–1126
- C. Xu, R. Killmeyer, M.L. Gray, S.U.M. Khan, Photocatalytic
effect of carbon-modified n-TiO2 nanoparticles under visible
light illumination, Appl. Catal., B, 64 (2006) 312–317.
- Y.A. Shaban, A.A. El Maradny, R.K. Al Farawati, Photocatalytic
reduction of nitrate in seawater using C/TiO2 nanoparticles,
J. Photochem. Photobiol., A, 328 (2016) 114–121.
- Y.A. Shaban, M.A. El Sayed, A.A. El Maradny, R.Kh. Al
Farawati, M.I. Al Zobidi, Photocatalytic degradation of phenol
in natural seawater using visible light active carbon modified
(CM)-n-TiO2 nanoparticles under UV light and natural sunlight
illuminations, Chemosphere, 91 (2013) 307–313.
- M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda,
Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure
of the active sites and the addition of Pt, J. Phys. Chem. B,
101 (1997) 2632–2636.
- H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Y. Teraoka,
H. Hatano, M. Sciavello, Photocatalytic reduction of CO2
with H2O on TiO2 and Cu/TiO2 catalysts, Res. Chem. Intermed.,
20 (1994) 815–823.
- K. Adachi, K. Ohta, T. Mizuno, Photocatalytic reduction of
carbon dioxide to hydrocarbon using copper-loaded titanium
dioxide, Sol. Energy, 53 (1994) 187–190.
- N. Sasirekha, S.J.S. Basha, K. Shanthi, Photocatalytic performance
of Ru doped anatase mounted on silica for reduction
of carbon dioxide, Appl. Catal., B, 62 (2006) 169–180.
- M. Tahir, N.S. Amin, Indium-doped TiO2 nanoparticles for
photocatalytic CO2 reduction with H2O vapors to CH4, Appl.
Catal., B, 162 (2015) 98–109.
- M.R. Uddin, M.R. Khan, M.W. Rahman, A. Yousuf, C.K. Cheng,
Photocatalytic reduction of CO2 into methanol over CuFe2O4/
TiO2 under visible light irradiation, React. Kinet. Mech. Catal.,
116 (2015) 589–604.
- P. Monash, G. Pugazhenthi, Development of ceramic supports
derived from low‐cost raw materials for membrane applications
and its optimization based on sintering temperature, Int. J.
Appl. Ceram. Technol., 8 (2011) 227–238.
- M. Amanipour, A. Safekordi, E.G. Babakhani, A. Zamaniyan,
M. Heidari, Effect of synthesis conditions on performance
of a hydrogen selective nano-composite ceramic membrane,
Int. J. Hydrogen Energy, 37 (2012) 15359–15366.
- I. Erdem, M. Ciftcioglu, S. Harsa, Separation of whey components
by using ceramic composite membranes, Desalination,
189 (2006) 87–91.
- A. Huang, Y.S. Lin, W. Yang, Synthesis and properties of
A-type zeolite membranes by secondary growth method with
vacuum seeding, J. Membr. Sci., 245 (2004) 41–51.
- Y. Li, H. Chen, J. Liu, W. Yang, Microwave synthesis of LTA zeolite
membranes without seeding, J. Membr. Sci., 277 (2006) 230–239.
- R. Sari, Z. Yaakob, M. Ismail, W.R.W. Daud, L. Hakim,
Palladium–alumina composite membrane for hydrogen
separator fabricated by combined sol–gel, and electroless plating
technique, Ceram. Int., 39 (2013) 3211–3219.
- H. Choi, E. Stathatos, D.D. Dionysiou, Sol-gel preparation
of mesoporous photocatalytic TiO2 films and TiO2/Al2O3
composite membranes for environmental applications, Appl.
Catal., B, 63 (2006) 60–67.
- M.A. Anderson, M.J. Gieselmann, Q. Xu, Titania and alumina
ceramic membranes, J. Memb. Sci., 39 (1988) 243–258.
- K. Grasshoff, K. Kremling, M. Erhardt, Methods of Seawater
Analysis, Welly-VCH, Weinheim, New York, 1999.
- J.D. Strickland, T.R. Parsons, A Practical Handbook of Seawater
Analysis, Fisheries Research Board of Canada, Ottawa, 1972.
- American Public Health Association (APHA), Standard Methods
for Examination of Water and Wastewater, 14th ed., New York,
1976.
- V.K.K. Tangirala, H. Gómez-Pozos, V. Rodríguez-Lugo, M.D.L.L.
Olvera, A study of the CO sensing responses of Cu-, Pt- and
Pd-activated SnO2 sensors: effect of precipitation agents,
Dopants and Doping Methods, Sensors, 17 (2017) 1011–1035.
- P. Kubelka, New contributions to the optics of intensely lightscattering
materials. Part I., J. Opt. Soc. Am., 38 (1948) 448–457.
- T. Tauc, R. Grigorovici, A. Vancu, Optical properties and
electronic structure of amorphous germanium, Phys. Status
Solidi B, 15 (1966) S627–637.
- Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, Electrical characterization
of band gap states in C-doped TiO2 films, Appl. Phys.
Lett., 87 (2005), doi.org/10.1063/1.2008376.
- Y.G. Tao, Y.Q. Xu, J. Pan, H. Gu, C.Y. Qin, P. Zhou, Glycine
assisted synthesis of flower-like TiO2 hierarchical spheres and
its application in photocatalysis, Mater. Sci. Eng., B, 177 (2012)
1664–1671.
- G. Zhang, Y.C. Zhang, M. Nadagouda, C. Han, K. O’Shea,
S.M. El-Sheikh, A.A. Ismail, D.D. Dionysiou, Visible lightsensitized
S, N and C co-doped polymorphic TiO2 for
photocatalytic destruction of microcystin-LR, Appl. Catal., B,
144 (2014) 614–621.
- V. Trevisan, A. Olivo, F. Pinna, M. Signoretto, F. Vindigni,
G. Cerrato, C.L. Bianchi, C-N/TiO2 photocatalysts: effect of
co-doping on the catalytic performance under visible light,
Appl. Catal., B, 160 (2014) 152–160.
- S.M. El-Sheikh, G. Zhang, H.M. El-Hosainy, A.A. Ismail,
K.E. O’Shea, P. Falaras, A.G. Kontos, D.D. Dionysiou, High
performance sulfur, nitrogen and carbon doped mesoporous
anatase–brookite TiO2 photocatalyst for the removal of microcystin-
LR under visible light irradiation, J. Hazard. Mater.,
280 (2014) 723–733.
- X.F. Lei, X.X. Xue, H. Yang, C. Chen, X. Li, M.C. Niu, X.Y. Gao,
Y.T. Yang, Effect of calcination temperature on the structure
and visible-light photocatalytic activities of (N, S and C)
co-doped TiO2 nano-materials, Appl. Surf. Sci., 332 (2015)
172–180.
- V. Etacheri, M. Seery, S. Hinder, G. Michlits, S. Pillai, A highly
efficient TiO2–xCx nano-heterojunction photocatalyst for visible
light induced antibacterial applications, ACS Appl. Mater.
Interfaces, 5 (2013) 1663–1672.
- X. Guo, D. Mao, G. Lu, S. Wang, G. Wu, The influence of La
doping on the catalytic behavior of Cu/ZrO2 for methanol
synthesis from CO2 hydrogenation, J. Mol. Catal. A: Chem.,
345 (2011) 60–68.
- L.C. Wang, Q. Liu, M. Chen, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan,
Structural evolution and catalytic properties of nanostructured
Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation
technique, J. Phys. Chem. C, 111 (2007) 16549–16557.
- WHO Expert Committee on Biological Standardization, Meeting
and World Health Organization, WHO Expert Committee on
Biological Standardization: 63rd Report, Vol. 980, World Health
Organization, Geneva, Switzerland, 2013.
- F. Shahrezaei, Y. Mansouri, A.A.L. Zinatizadeh, A. Akhbari,
Photocatalytic degradation of aniline using TiO2 nanoparticles
in a vertical circulating photocatalytic reactor, Int. J. Photoenergy,
2012 (2012) 8 p, doi.org/10.1155/2012/430638.
- S.W. Nixon, Physical energy inputs and the comparative
ecology of lake and marine ecosystems, Limnol. Oceanogr.,
33 (1988) 1005–1025.
- S.P. Baden, The cryptofauna of Zostera marina (L.): abundance,
biomass and population dynamics, Netherlands J. Sea Res.,
27 (1990) 81–92.
- R.G. Wetzel, Limnology: Lake and River Ecosystems, 3rd ed.,
Academic Press, San Diego, CA, 2001.
- EPA (2012), Conductivity in Water: Monitoring and Assessment,
2018. Available at: http://water.epa.gov/type/rsl/monitoring/
vms59.cfm.
- iiiiiiiii R.L. Miller, W.L. Bradford, N.E. Peters, Specific Conductance:
Theoretical Considerations and Application to Analytical
Quality Control, In: U.S. Geological Survey Water-Supply Paper,
1988, Available at: http://pubs.usgs.gov/wsp/2311/report.pdf.
(Visiting date: 10.10.2018)