References

  1. World Health Organization (WHO), UNICEF, Global Water Supply and Sanitation Assessment 2000 Report, WHO, Geneva, Switzerland, 2000.
  2. A.T. Wolf, Water and human security, J. Contemp. Water Res. Educ., 118 (2001) 29–37.
  3. World Health Organization (WHO), Guidelines for Drinking Water Quality, Surveillance and Control of Community Supplies, Vol. 3, 2nd ed., WHO, Geneva, 1997.
  4. S. Yang, J.-S. Gu, H.-Y. Yu, J. Zhou, S.-F. Li, X.-M. Wu, L. Wang, Polypropylene membrane surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic membrane reactor, Sep. Purif. Technol., 83 (2011) 157–165.
  5. R. Mu, Z. Xu, L. Li, Y. Shao, H. Wan, S. Zheng, On the photocatalytic properties of elongated TiO2 nanoparticles for phenol degradation and Cr(VI) reduction, J. Hazard. Mater., 176 (2010) 495–502.
  6. N.M. Mahmoodi, M. Arami, N.Y. Limaee, Photocatalytic degradation of triazinic ring-containing azo dye (Reactive Red 198) by using immobilized TiO2 photoreactor: bench scale study, J. Hazard. Mater., 133 (2006) 113–118.
  7. Y. Zhang, D. Wang, G. Zhang, Photocatalytic degradation of organic contaminants by TiO2/sepiolite composites prepared at low temperature, Chem. Eng. J., 173 (2011) 1–10.
  8. H.A. Le, L.T. Linh, S. Chin, J. Jurng, Photocatalytic degradation of methylene blue by a combination of TiO2-anatase and coconut shell activated carbon, Powder Technol., 225 (2012) 167–175.
  9. S.-y. Lu, D. Wu, Q.-l. Wang, J. Yan, A.G. Buekens, K.-f. Cen, Photocatalytic decomposition on nano-TiO2: destruction of chloroaromatic compounds, Chemosphere, 82 (2011) 1215–1224.
  10. H. Lee, J. Choi, S. Lee, S.-T. Yun, C. Lee, J. Lee, Kinetic enhancement in Photocatalytic oxidation of organic compounds by WO3 in the presence of Fenton-like reagent, Appl. Catal., B, 138–139 (2013) 311–317.
  11. X. Gao, X. Su, C. Yang, F. Xiao, J. Wang, X. Cao, S. Wang, L. Zhang, Hydrothermal synthesis of WO3 nanoplates as highly sensitive cyclohexene sensor and high-efficiency MB photocatalyst, Sens. Actuators, B, 181 (2013) 537–543.
  12. Z. Miao, S. Tao, Y. Wang, Y. Yu, C. Meng, Y. An, Hierarchically porous silica as an efficient catalyst carrier for high performance vis-light assisted Fenton degradation, Microporous Mesoporous Mater., 176 (2013) 178–185.
  13. Y.J. Zhang, L.C. Liu, L.L. Ni, B.L. Wang, A facile and low-cost synthesis of granulated blast furnace slag-based cementitious material coupled with Fe2O3 Catalyst for treatment of dye wastewater, Appl. Catal., B, 138–139 (2013) 9–16.
  14. V.K. Gupta, D. Pathania, S. Agarwal, P. Singh, Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light, J. Hazard. Mater., 243 (2012) 179–186.
  15. S. Liu, X. Wang, W. Zhao, K. Wang, H. Sang, Z. He, Synthesis, characterization and enhanced photocatalytic performance of Ag2S-coupled ZnO/Zn Score/shell nanorods, J. Alloys Compd., 568 (2013) 84–91.
  16. S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr., Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297 (2002) 2243–2245.
  17. Y.A. Shaban, S.U.M. Khan, Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water, Int. J. Hydrogen Energy, 33 (2008) 1118–1126
  18. C. Xu, R. Killmeyer, M.L. Gray, S.U.M. Khan, Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination, Appl. Catal., B, 64 (2006) 312–317.
  19. Y.A. Shaban, A.A. El Maradny, R.K. Al Farawati, Photocatalytic reduction of nitrate in seawater using C/TiO2 nanoparticles, J. Photochem. Photobiol., A, 328 (2016) 114–121.
  20. Y.A. Shaban, M.A. El Sayed, A.A. El Maradny, R.Kh. Al Farawati, M.I. Al Zobidi, Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations, Chemosphere, 91 (2013) 307–313.
  21. M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda, Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt, J. Phys. Chem. B, 101 (1997) 2632–2636.
  22. H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Y. Teraoka, H. Hatano, M. Sciavello, Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts, Res. Chem. Intermed., 20 (1994) 815–823.
  23. K. Adachi, K. Ohta, T. Mizuno, Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide, Sol. Energy, 53 (1994) 187–190.
  24. N. Sasirekha, S.J.S. Basha, K. Shanthi, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide, Appl. Catal., B, 62 (2006) 169–180.
  25. M. Tahir, N.S. Amin, Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4, Appl. Catal., B, 162 (2015) 98–109.
  26. M.R. Uddin, M.R. Khan, M.W. Rahman, A. Yousuf, C.K. Cheng, Photocatalytic reduction of CO2 into methanol over CuFe2O4/ TiO2 under visible light irradiation, React. Kinet. Mech. Catal., 116 (2015) 589–604.
  27. P. Monash, G. Pugazhenthi, Development of ceramic supports derived from low‐cost raw materials for membrane applications and its optimization based on sintering temperature, Int. J. Appl. Ceram. Technol., 8 (2011) 227–238.
  28. M. Amanipour, A. Safekordi, E.G. Babakhani, A. Zamaniyan, M. Heidari, Effect of synthesis conditions on performance of a hydrogen selective nano-composite ceramic membrane, Int. J. Hydrogen Energy, 37 (2012) 15359–15366.
  29. I. Erdem, M. Ciftcioglu, S. Harsa, Separation of whey components by using ceramic composite membranes, Desalination, 189 (2006) 87–91.
  30. A. Huang, Y.S. Lin, W. Yang, Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding, J. Membr. Sci., 245 (2004) 41–51.
  31. Y. Li, H. Chen, J. Liu, W. Yang, Microwave synthesis of LTA zeolite membranes without seeding, J. Membr. Sci., 277 (2006) 230–239.
  32. R. Sari, Z. Yaakob, M. Ismail, W.R.W. Daud, L. Hakim, Palladium–alumina composite membrane for hydrogen separator fabricated by combined sol–gel, and electroless plating technique, Ceram. Int., 39 (2013) 3211–3219.
  33. H. Choi, E. Stathatos, D.D. Dionysiou, Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications, Appl. Catal., B, 63 (2006) 60–67.
  34. M.A. Anderson, M.J. Gieselmann, Q. Xu, Titania and alumina ceramic membranes, J. Memb. Sci., 39 (1988) 243–258.
  35. K. Grasshoff, K. Kremling, M. Erhardt, Methods of Seawater Analysis, Welly-VCH, Weinheim, New York, 1999.
  36. J.D. Strickland, T.R. Parsons, A Practical Handbook of Seawater Analysis, Fisheries Research Board of Canada, Ottawa, 1972.
  37. American Public Health Association (APHA), Standard Methods for Examination of Water and Wastewater, 14th ed., New York, 1976.
  38. V.K.K. Tangirala, H. Gómez-Pozos, V. Rodríguez-Lugo, M.D.L.L. Olvera, A study of the CO sensing responses of Cu-, Pt- and Pd-activated SnO2 sensors: effect of precipitation agents, Dopants and Doping Methods, Sensors, 17 (2017) 1011–1035.
  39. P. Kubelka, New contributions to the optics of intensely lightscattering materials. Part I., J. Opt. Soc. Am., 38 (1948) 448–457.
  40. T. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B, 15 (1966) S627–637.
  41. Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, Electrical characterization of band gap states in C-doped TiO2 films, Appl. Phys. Lett., 87 (2005), doi.org/10.1063/1.2008376.
  42. Y.G. Tao, Y.Q. Xu, J. Pan, H. Gu, C.Y. Qin, P. Zhou, Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis, Mater. Sci. Eng., B, 177 (2012) 1664–1671.
  43. G. Zhang, Y.C. Zhang, M. Nadagouda, C. Han, K. O’Shea, S.M. El-Sheikh, A.A. Ismail, D.D. Dionysiou, Visible lightsensitized S, N and C co-doped polymorphic TiO2 for photocatalytic destruction of microcystin-LR, Appl. Catal., B, 144 (2014) 614–621.
  44. V. Trevisan, A. Olivo, F. Pinna, M. Signoretto, F. Vindigni, G. Cerrato, C.L. Bianchi, C-N/TiO2 photocatalysts: effect of co-doping on the catalytic performance under visible light, Appl. Catal., B, 160 (2014) 152–160.
  45. S.M. El-Sheikh, G. Zhang, H.M. El-Hosainy, A.A. Ismail, K.E. O’Shea, P. Falaras, A.G. Kontos, D.D. Dionysiou, High performance sulfur, nitrogen and carbon doped mesoporous anatase–brookite TiO2 photocatalyst for the removal of microcystin- LR under visible light irradiation, J. Hazard. Mater., 280 (2014) 723–733.
  46. X.F. Lei, X.X. Xue, H. Yang, C. Chen, X. Li, M.C. Niu, X.Y. Gao, Y.T. Yang, Effect of calcination temperature on the structure and visible-light photocatalytic activities of (N, S and C) co-doped TiO2 nano-materials, Appl. Surf. Sci., 332 (2015) 172–180.
  47. V. Etacheri, M. Seery, S. Hinder, G. Michlits, S. Pillai, A highly efficient TiO2–xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications, ACS Appl. Mater. Interfaces, 5 (2013) 1663–1672.
  48. X. Guo, D. Mao, G. Lu, S. Wang, G. Wu, The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation, J. Mol. Catal. A: Chem., 345 (2011) 60–68.
  49. L.C. Wang, Q. Liu, M. Chen, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique, J. Phys. Chem. C, 111 (2007) 16549–16557.
  50. WHO Expert Committee on Biological Standardization, Meeting and World Health Organization, WHO Expert Committee on Biological Standardization: 63rd Report, Vol. 980, World Health Organization, Geneva, Switzerland, 2013.
  51. F. Shahrezaei, Y. Mansouri, A.A.L. Zinatizadeh, A. Akhbari, Photocatalytic degradation of aniline using TiO2 nanoparticles in a vertical circulating photocatalytic reactor, Int. J. Photoenergy, 2012 (2012) 8 p, doi.org/10.1155/2012/430638.
  52. S.W. Nixon, Physical energy inputs and the comparative ecology of lake and marine ecosystems, Limnol. Oceanogr., 33 (1988) 1005–1025.
  53. S.P. Baden, The cryptofauna of Zostera marina (L.): abundance, biomass and population dynamics, Netherlands J. Sea Res., 27 (1990) 81–92.
  54. R.G. Wetzel, Limnology: Lake and River Ecosystems, 3rd ed., Academic Press, San Diego, CA, 2001.
  55. EPA (2012), Conductivity in Water: Monitoring and Assessment, 2018. Available at: http://water.epa.gov/type/rsl/monitoring/ vms59.cfm.
  56. iiiiiiiii R.L. Miller, W.L. Bradford, N.E. Peters, Specific Conductance: Theoretical Considerations and Application to Analytical Quality Control, In: U.S. Geological Survey Water-Supply Paper, 1988, Available at: http://pubs.usgs.gov/wsp/2311/report.pdf. (Visiting date: 10.10.2018)