References
- S.D. Richardson, S.Y. Kimura, Emerging environmental
contaminants: challenges facing our next generation and
potential engineering solutions, Environ. Technol. Innovation,
8 (2017) 40–56.
- M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive removal
of antibiotics from water and wastewater: progress and
challenges, Sci. Total Environ., 532 (2015) 112–126.
- W.-T. Jiang, P.-H. Chang, Y.-S. Wang, Y. Tsai, J.-S. Jean,
Z. Li, K. Krukowski, Removal of ciprofloxacin from water by
birnessite, J. Hazard. Mater., 250–251 (2013) 362–369.
- A.M. Botero-Coy, D. Martínez-Pachón, C. Boix, R.J. Rincón,
N. Castillo, L.P. Arias-Marín, L. Manrique-Losada, R. Torres-Palma,
A. Moncayo-Lasso, F. Hernández, ‘An investigation into the
occurrence and removal of pharmaceuticals in Colombian
wastewater’, Sci. Total Environ., 642 (2018) 842–853.
- C.G. Daughton, Pharmaceuticals and the environment (PiE):
evolution and impact of the published literature revealed by
bibliometric analysis, Sci. Total Environ., 562 (2016) 391–426.
- M.-k. Liu, Y.-y. Liu, D.-d. Bao, G. Zhu, G.-h. Yang, J.-f. Geng,
H.-t. Li, Effective removal of tetracycline antibiotics from water
using hybrid carbon membranes, Sci. Rep., 7 (2017) 43717.
- K. Isaac-Olivé, A.E. Navarro-Frómeta, Detection of Pharmaceuticals
in the Environment, L.M. Gómez-Oliván Ed., Ecopharmacovigilance:
Multidisciplinary Approaches to Environmental
Safety of Medicines, 1st ed., Springer International Publishing,
Gewerbestrasse, Switzerland, 2017, pp. 1–18.
- M. Mezni, T. Saied, N. Horri, E. Srasra, Removal of enrofloxacin
from aqueous solutions using illite and synthetic zeolite X, Surf.
Eng. Appl. Electrochem., 53 (2017) 89–97.
- E.-S.I. El-Shafey, H. Al-Lawati, A.S. Al-Sumri, Ciprofloxacin
adsorption from aqueous solution onto chemically prepared
carbon from date palm leaflets, J. Environ. Sci., 24 (2012)
1579–1586.
- J.-Q. Xiong, M.B. Kurade, B.-H. Jeon, Can microalgae remove
pharmaceutical contaminants from water?, Trends Biotechnol.,
36 (2018) 30–44.
- M.A. Gharaghani, M. Malakootian, Photocatalytic degradation
of the antibiotic ciprofloxacin by ZnO nanoparticles immobilized
on a glass plate, Desal. Wat. Treat., 89 (2017) 304–314.
- A.R. Silva, P.M. Martins, S. Teixeira, S.A.C. Carabineiro,
K. Kuehn, G. Cuniberti, M.M. Alves, S. Lanceros-Mendez,
L. Pereira, Ciprofloxacin wastewater treated by UVA photocatalysis:
contribution of irradiated TiO2 and ZnO nanoparticles
on the final toxicity as assessed by Vibrio fischeri, RSC Adv.,
98 (2016) 95494–95505.
- M.J. Ahmed, Adsorption of quinolone, tetracycline, and
penicillin antibiotics from aqueous solution using activated
carbons: review, Environ. Toxicol. Pharmacol., 50 (2017) 1–10.
- M. Yoosefian, S. Ahmadzadeh, M. Aghasi, M. Dolatabadi,
Optimization of electrocoagulation process for efficient removal
of ciprofloxacin antibiotic using iron electrode; kinetic and
isotherm studies of adsorption, J. Mol. Liq., 225 (2017) 544–553.
- S. Ahmadzadeh, A. Asadipour, M. Pournamdari, B. Behnam,
H.R. Rahimi, M. Dolatabadi, Removal of ciprofloxacin from
hospital wastewater using electrocoagulation technique by
aluminum electrode: optimization and modelling through
response surface methodology, Process Saf. Environ. Prot.,
109 (2017) 538–547.
- C.-J. Wang, Z.H. Li, W.-T. Jiang. Adsorption of ciprofloxacin on
2:1 dioctahedral clay minerals, Appl. Clay Sci., 54 (2011) 723–728.
- C.J. Wang, Z.H. Li, W.T. Jiang, J.S. Jean, C.C. Chuan, Cation
exchange interaction between antibiotic ciprofloxacin and
montmorillonite, J. Hazard. Mater., 183 (2011) 309–314.
- M.E. Roca Jalil, M. Baschini, K. Sapag, Influence of pH and
antibiotic solubility on the removal of ciprofloxacin from
aqueous media using montmorillonite, Appl. Clay Sci., 114 (2015)
69–76.
- D. Zide, O. Fatoki, O. Oputu, B. Opeolu, S. Nelana, O. Olatunji,
Zeolite ‘adsorption’ capacities in aqueous acidic media; the
role of acid choice and quantification method on ciprofloxacin
removal, Microporous Mesoporous Mater., 255 (2018) 226–241.
- Á. de Jesús Ruíz-Baltazar, Green composite based on silver
nanoparticles supported on diatomaceous earth: kinetic
adsorption models and antibacterial effect, J. Cluster Sci.,
29 (2018) 509–519.
- J. Janićijević, D. Krajišnik, B. Čalija, V. Dobričić, A. Daković,
J. Krstić, M. Marković, J. Milić, Inorganically modified diatomite
as a potential prolonged-release drug carrier, Mater. Sci. Eng.,
C, 42 (2014) 412–420.
- M. Price, K. Walsh. Rocks and Minerals (Pocket Nature), 1st ed.,
Dorling Kinderley, 80 Strand, London WC2R 0RL, Great Britain,
2005, pp. 7–22.
- O.S. Bello, K.A. Adegoke, R.O. Oyewole, Insights into
the adsorption of heavy metals from wastewater using
diatomaceous earth, Sep. Purif. Technol., 49 (2014) 1787–1806.
- R.A. Crane, D.J. Sapsford, Towards “Precision Mining” of
wastewater:
selective recovery of Cu from acid mine drainage
onto diatomite supported nanoscale zerovalent iron particles,
Chemosphere, 202 (2018) 339–348.
- S.S. Salih, T.K. Ghosh, Adsorption of Zn(II) ions by chitosan
coated diatomaceous earth, Int. J. Biol. Macromol., 106 (2018)
602–610.
- S.S. Salih, T.K. Ghosh, Highly efficient competitive removal
of Pb(II) and Ni(II) by chitosan/diatomaceous earth composite,
J. Environ. Chem. Eng., 6 (2018) 435–443.
- Y. Fu, Y. Huang, J. Hu, Z. Zhang, Preparation of chitosan/amine
modified diatomite composites and adsorption properties of
Hg(II) ions, Water Sci. Technol., 77 (2018) 1363–1371.
- A. Hethnawi, N.N. Nassar, A.D. Manasrah, G. Vitale,
Polyethylenimine-functionalized pyroxene nanoparticles
embedded on diatomite for adsorptive removal of dye
from textile wastewater in a fixed-bed column, Chem. Eng. J.,
320 (2017) 389–404.
- K. Agdi, A. Bouaid, A.M. Esteban, P.F. Hernando, A. Azmani,
C. Camara, Removal of atrazine and four organophosphorus
pesticides from environmental waters by diatomaceous earthremediation
method, J. Environ. Monit., 2 (2000) 420–423.
- W.T. Tsai, C.W. Lai, T.Y. Su. Adsorption of bisphenol-A
from aqueous solution onto minerals and carbon adsorbents,
J. Hazard. Mater., 134 (2006) 169–175.
- A.A. Sharipova, S.B. Aidarova, N. Ye Bekturganova, A. Tleuova,
M. Kerimkulova, O. Yessimova, T. Kairaliyeva, O. Lygina,
S. Lyubchik, R. Miller, Triclosan adsorption from model system
by mineral sorbent diatomite, Colloids Surf., A, 532 (2017)
97–101.
- B.S. Stromer, B. Woodbury, C.F. Williams, Tylosin sorption
to diatomaceous earth described by Langmuir isotherm and
Freundlich isotherm models, Chemosphere, 193 (2018) 912–920.
- J. Janićijević, D. Krajišnik, B. Čalija, B.N. Vasiljević, V. Dobričić,
A. Daković, M.D. Antonijević, J. Milić, Modified local diatomite
as potential functional drug carrier—a model study for
diclofenac sodium, Int. J. Pharm., 496 (2015) 466–474.
- X. Meng, Z. Liu, C. Deng, M. Zhu, D. Wang, K. Li, Y. Deng,
M. Jiang, Microporous nano-MgO/diatomite ceramic membrane
with high positive surface charge for tetracycline removal,
J. Hazard. Mater., 320 (2016) 495–503.
- Z. Jian, P. Qingwei, N. Meihong, S. Haiqiang, L. Na, Kinetics
and equilibrium studies from the methylene blue adsorption
on diatomite treated with sodium hydroxide, Appl. Clay Sci.,
83–84 (2013) 12–16.
- J.A. Garcia-Alonso, F. Zurita-Martinez, C.A. Guzmán-González,
J. Del Real-Olvera, B.C. Sulbarán-Rangel, Nanostructured
diatomite and its potential for the removal of an antibiotic from
water, Bioinspired Biomimetic Nanobiomater., 1 (2018) 1–7.
- J.B. Parsa, T.M. Panah, F.N. Chianeh, Removal of ciprofloxacin
from aqueous solution by a continuous flow electro-coagulation
process, Korean J. Chem. Eng., 32 (2015) 1–9.
- X.V. Doorslaer, J. Dewulf, H.V. Langenhove, V. Demeester,
Fluoroquinolone antibiotics: an emerging class of environmental
micropollutants, Sci. Total Environ., 500–501 (2014) 250–269.
- J.A.L. Perini, A.L. Tonetti, C. Vidal, C.C. Montagner,
R.F.P. Nogueira, Simultaneous degradation of ciprofloxacin,
amoxicillin,
sulfathiazole and sulfamethazine, and disinfection
of hospital effluent after biological treatment via photo-Fenton
process under ultraviolet germicidal irradiation, Appl. Catal.,
B, 224 (2018) 761–771.
- N. Carmosini, L.S. Lee, Ciprofloxacin sorption by dissolved
organic carbon from reference and bio-waste materials, Chemosphere,
77 (2009) 813–820.
- A.S. Adeleye, J.R. Conway, K. Garner, Y. Huang, Y. Su,
A.A. Keller. Engineered nanomaterials for water treatment and
remediation: costs, benefits, and applicability, Chem. Eng. J.,
286 (2016) 640–662.
- N. Inchaurrondo, J. Font, C.P. Ramos, P. Haure. Natural
diatomites: efficient green catalyst for Fenton-like oxidation
of Orange II, Appl. Catal., B, 181 (2016) 481–494.
- D.J. Larsson, C. de Pedro, N. Paxeus, Effluent from drug
manufactures contains extremely high levels of pharmaceuticals,
J. Hazard. Mater., 148 (2007) 751–755.
- S. Gummadi, D. Thota, S.V. Varri, P. Vaddi, P., V.L.N.S. Rao,
Development and validation of UV spectroscopic methods for
simultaneous estimation of Ciprofloxacin and Tinidazole in
tablet formulation, Int. Curr. Pharm. J., 1 (2012) 317–321.
- K. Gupta, J.B. Huo, J.C.E. Yang, M.L. Fu, B. Yuan, Z. Chen,
(MoS4)2− intercalated CAMoS4·LDH material for the efficient
and facile sequestration of antibiotics from aqueous solution,
Chem. Eng. J., 355 (2019) 637–649.