References

  1. S.D. Richardson, S.Y. Kimura, Emerging environmental contaminants: challenges facing our next generation and potential engineering solutions, Environ. Technol. Innovation, 8 (2017) 40–56.
  2. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive removal of antibiotics from water and wastewater: progress and challenges, Sci. Total Environ., 532 (2015) 112–126.
  3. W.-T. Jiang, P.-H. Chang, Y.-S. Wang, Y. Tsai, J.-S. Jean, Z. Li, K. Krukowski, Removal of ciprofloxacin from water by birnessite, J. Hazard. Mater., 250–251 (2013) 362–369.
  4. A.M. Botero-Coy, D. Martínez-Pachón, C. Boix, R.J. Rincón, N. Castillo, L.P. Arias-Marín, L. Manrique-Losada, R. Torres-Palma, A. Moncayo-Lasso, F. Hernández, ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater’, Sci. Total Environ., 642 (2018) 842–853.
  5. C.G. Daughton, Pharmaceuticals and the environment (PiE): evolution and impact of the published literature revealed by bibliometric analysis, Sci. Total Environ., 562 (2016) 391–426.
  6. M.-k. Liu, Y.-y. Liu, D.-d. Bao, G. Zhu, G.-h. Yang, J.-f. Geng, H.-t. Li, Effective removal of tetracycline antibiotics from water using hybrid carbon membranes, Sci. Rep., 7 (2017) 43717.
  7. K. Isaac-Olivé, A.E. Navarro-Frómeta, Detection of Pharmaceuticals in the Environment, L.M. Gómez-Oliván Ed., Ecopharmacovigilance: Multidisciplinary Approaches to Environmental Safety of Medicines, 1st ed., Springer International Publishing, Gewerbestrasse, Switzerland, 2017, pp. 1–18.
  8. M. Mezni, T. Saied, N. Horri, E. Srasra, Removal of enrofloxacin from aqueous solutions using illite and synthetic zeolite X, Surf. Eng. Appl. Electrochem., 53 (2017) 89–97.
  9. E.-S.I. El-Shafey, H. Al-Lawati, A.S. Al-Sumri, Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets, J. Environ. Sci., 24 (2012) 1579–1586.
  10. J.-Q. Xiong, M.B. Kurade, B.-H. Jeon, Can microalgae remove pharmaceutical contaminants from water?, Trends Biotechnol., 36 (2018) 30–44.
  11. M.A. Gharaghani, M. Malakootian, Photocatalytic degradation of the antibiotic ciprofloxacin by ZnO nanoparticles immobilized on a glass plate, Desal. Wat. Treat., 89 (2017) 304–314.
  12. A.R. Silva, P.M. Martins, S. Teixeira, S.A.C. Carabineiro, K. Kuehn, G. Cuniberti, M.M. Alves, S. Lanceros-Mendez, L. Pereira, Ciprofloxacin wastewater treated by UVA photocatalysis: contribution of irradiated TiO2 and ZnO nanoparticles on the final toxicity as assessed by Vibrio fischeri, RSC Adv., 98 (2016) 95494–95505.
  13. M.J. Ahmed, Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: review, Environ. Toxicol. Pharmacol., 50 (2017) 1–10.
  14. M. Yoosefian, S. Ahmadzadeh, M. Aghasi, M. Dolatabadi, Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption, J. Mol. Liq., 225 (2017) 544–553.
  15. S. Ahmadzadeh, A. Asadipour, M. Pournamdari, B. Behnam, H.R. Rahimi, M. Dolatabadi, Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: optimization and modelling through response surface methodology, Process Saf. Environ. Prot., 109 (2017) 538–547.
  16. C.-J. Wang, Z.H. Li, W.-T. Jiang. Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals, Appl. Clay Sci., 54 (2011) 723–728.
  17. C.J. Wang, Z.H. Li, W.T. Jiang, J.S. Jean, C.C. Chuan, Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite, J. Hazard. Mater., 183 (2011) 309–314.
  18. M.E. Roca Jalil, M. Baschini, K. Sapag, Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite, Appl. Clay Sci., 114 (2015) 69–76.
  19. D. Zide, O. Fatoki, O. Oputu, B. Opeolu, S. Nelana, O. Olatunji, Zeolite ‘adsorption’ capacities in aqueous acidic media; the role of acid choice and quantification method on ciprofloxacin removal, Microporous Mesoporous Mater., 255 (2018) 226–241.
  20. Á. de Jesús Ruíz-Baltazar, Green composite based on silver nanoparticles supported on diatomaceous earth: kinetic adsorption models and antibacterial effect, J. Cluster Sci., 29 (2018) 509–519.
  21. J. Janićijević, D. Krajišnik, B. Čalija, V. Dobričić, A. Daković, J. Krstić, M. Marković, J. Milić, Inorganically modified diatomite as a potential prolonged-release drug carrier, Mater. Sci. Eng., C, 42 (2014) 412–420.
  22. M. Price, K. Walsh. Rocks and Minerals (Pocket Nature), 1st ed., Dorling Kinderley, 80 Strand, London WC2R 0RL, Great Britain, 2005, pp. 7–22.
  23. O.S. Bello, K.A. Adegoke, R.O. Oyewole, Insights into the adsorption of heavy metals from wastewater using diatomaceous earth, Sep. Purif. Technol., 49 (2014) 1787–1806.
  24. R.A. Crane, D.J. Sapsford, Towards “Precision Mining” of wastewater: selective recovery of Cu from acid mine drainage onto diatomite supported nanoscale zerovalent iron particles, Chemosphere, 202 (2018) 339–348.
  25. S.S. Salih, T.K. Ghosh, Adsorption of Zn(II) ions by chitosan coated diatomaceous earth, Int. J. Biol. Macromol., 106 (2018) 602–610.
  26. S.S. Salih, T.K. Ghosh, Highly efficient competitive removal of Pb(II) and Ni(II) by chitosan/diatomaceous earth composite, J. Environ. Chem. Eng., 6 (2018) 435–443.
  27. Y. Fu, Y. Huang, J. Hu, Z. Zhang, Preparation of chitosan/amine modified diatomite composites and adsorption properties of Hg(II) ions, Water Sci. Technol., 77 (2018) 1363–1371.
  28. A. Hethnawi, N.N. Nassar, A.D. Manasrah, G. Vitale, Polyethylenimine-functionalized pyroxene nanoparticles embedded on diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column, Chem. Eng. J., 320 (2017) 389–404.
  29. K. Agdi, A. Bouaid, A.M. Esteban, P.F. Hernando, A. Azmani, C. Camara, Removal of atrazine and four organophosphorus pesticides from environmental waters by diatomaceous earthremediation method, J. Environ. Monit., 2 (2000) 420–423.
  30. W.T. Tsai, C.W. Lai, T.Y. Su. Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents, J. Hazard. Mater., 134 (2006) 169–175.
  31. A.A. Sharipova, S.B. Aidarova, N. Ye Bekturganova, A. Tleuova, M. Kerimkulova, O. Yessimova, T. Kairaliyeva, O. Lygina, S. Lyubchik, R. Miller, Triclosan adsorption from model system by mineral sorbent diatomite, Colloids Surf., A, 532 (2017) 97–101.
  32. B.S. Stromer, B. Woodbury, C.F. Williams, Tylosin sorption to diatomaceous earth described by Langmuir isotherm and Freundlich isotherm models, Chemosphere, 193 (2018) 912–920.
  33. J. Janićijević, D. Krajišnik, B. Čalija, B.N. Vasiljević, V. Dobričić, A. Daković, M.D. Antonijević, J. Milić, Modified local diatomite as potential functional drug carrier—a model study for diclofenac sodium, Int. J. Pharm., 496 (2015) 466–474.
  34. X. Meng, Z. Liu, C. Deng, M. Zhu, D. Wang, K. Li, Y. Deng, M. Jiang, Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal, J. Hazard. Mater., 320 (2016) 495–503.
  35. Z. Jian, P. Qingwei, N. Meihong, S. Haiqiang, L. Na, Kinetics and equilibrium studies from the methylene blue adsorption on diatomite treated with sodium hydroxide, Appl. Clay Sci., 83–84 (2013) 12–16.
  36. J.A. Garcia-Alonso, F. Zurita-Martinez, C.A. Guzmán-González, J. Del Real-Olvera, B.C. Sulbarán-Rangel, Nanostructured diatomite and its potential for the removal of an antibiotic from water, Bioinspired Biomimetic Nanobiomater., 1 (2018) 1–7.
  37. J.B. Parsa, T.M. Panah, F.N. Chianeh, Removal of ciprofloxacin from aqueous solution by a continuous flow electro-coagulation process, Korean J. Chem. Eng., 32 (2015) 1–9.
  38. X.V. Doorslaer, J. Dewulf, H.V. Langenhove, V. Demeester, Fluoroquinolone antibiotics: an emerging class of environmental micropollutants, Sci. Total Environ., 500–501 (2014) 250–269.
  39. J.A.L. Perini, A.L. Tonetti, C. Vidal, C.C. Montagner, R.F.P. Nogueira, Simultaneous degradation of ciprofloxacin, amoxicillin, sulfathiazole and sulfamethazine, and disinfection of hospital effluent after biological treatment via photo-Fenton process under ultraviolet germicidal irradiation, Appl. Catal., B, 224 (2018) 761–771.
  40. N. Carmosini, L.S. Lee, Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials, Chemosphere, 77 (2009) 813–820.
  41. A.S. Adeleye, J.R. Conway, K. Garner, Y. Huang, Y. Su, A.A. Keller. Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability, Chem. Eng. J., 286 (2016) 640–662.
  42. N. Inchaurrondo, J. Font, C.P. Ramos, P. Haure. Natural diatomites: efficient green catalyst for Fenton-like oxidation of Orange II, Appl. Catal., B, 181 (2016) 481–494.
  43. D.J. Larsson, C. de Pedro, N. Paxeus, Effluent from drug manufactures contains extremely high levels of pharmaceuticals, J. Hazard. Mater., 148 (2007) 751–755.
  44. S. Gummadi, D. Thota, S.V. Varri, P. Vaddi, P., V.L.N.S. Rao, Development and validation of UV spectroscopic methods for simultaneous estimation of Ciprofloxacin and Tinidazole in tablet formulation, Int. Curr. Pharm. J., 1 (2012) 317–321.
  45. K. Gupta, J.B. Huo, J.C.E. Yang, M.L. Fu, B. Yuan, Z. Chen, (MoS4)2 intercalated CAMoS4·LDH material for the efficient and facile sequestration of antibiotics from aqueous solution, Chem. Eng. J., 355 (2019) 637–649.