References

  1. W. Aktar, D. Sengupta, A. Chowdhury, Impact of pesticides use in agriculture: their benefits and hazards, Interdiscip. Toxicol., 2 (2009) 1–12.
  2. K.L. Klarich, N.C. Pflug, E.M. Dewald, M.L. Hladik, D.W. Kolpin, D.M. Cwiertny, G.H. Lefevre, Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment, Environ. Sci. Technol. Lett., 4 (2017) 168–173.
  3. D. Landry, D. Dousset, F. Andreux, Laboratory leaching studies of oryzalin and diuron through three undisturbed vineyard soil columns, Chemosphere, 54 (2004) 735–742.
  4. N.A. Mir, A. Khan, M. Muneer, S. Vijayalakhsmi, Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous suspension of TiO2: adsorption, kinetics, product analysis and toxicity assessment, Sci. Total Environ., 458–460 (2013) 388–398.
  5. S. Malato, J. Blanco, J. Cácere, A.R. Fernández-Alba, A. Agüera, A. Rodrı́guez, Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy, Catal. Today, 76 (2002) 209–220.
  6. S. Mandal, Reaction rate constants of hydroxyl radicals with micropollutants and their significance in advanced oxidation processes, J. Adv. Oxid. Technol., 21 (2018) 178–195.
  7. H. Cao, X. Lin, H. Zhan, H. Zhang, J. Lin, Photocatalytic degradation kinetics and mechanism of phenobarbital in TiO2 aqueous solution, Chemosphore, 90 (2013) 1514–1519.
  8. T. Leshuk, D. de Oliveira Livera, K.M. Peru, J.V. Headley, S. Vijayaraghavan, T. Wong, F. Gu, Photocatalytic degradation kinetics of naphthenic acids in oil sands process-affected water: multifactorial determination of significant factors, Chemosphore, 165 (2016) 10–17.
  9. Q. Zhao, Y. Ge, P. Zuo, D. Shi, S. Jia, Degradation of thiamethoxam in aqueous solution by ozonation: influencing factors, intermediates, degradation mechanism and toxicity assessment, Chemosphore, 146 (2016) 105–112.
  10. M.A. Vishnuganth, N. Remya, M. Kumar, N. Selvaraju, Photocatalytic degradation of carbofuran by TiO2-coated activated carbon: model for kinetic, electrical energy per order and economic analysis, J. Environ. Manage., 181 (2016) 201–207.
  11. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  12. S.N. Hosseini, S.M. Borghei, M. Vossoughi, N. Taghavinia, Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol, Appl. Catal., B, 74 (2007) 53–62.
  13. R. Žabar, T. Komel, J. Fabjan, M.B. Kralj, P. Trebše, Photocatalytic degradation with immobilised TiO2 of three selected neonicotinoid insecticides: imidacloprid, thiamethoxam and clothianidin, Chemosphore, 89 (2012) 293–301.
  14. D. Duranoğlu, Preparation of TiO2/perlite composites by using 23–1 fractional factorial design, J. Turkish Chem. Soc. Sect. A Chem., 3 (2016) 299–312.
  15. M. Giannouri, Th. Kalampaliki, N. Todorova, T. Giannakopoulou, N. Boukos, D. Petrakis, T. Vaimakis, C. Trapalis, One-step synthesis of TiO2/perlite composites by flame spray pyrolysis and their photocatalytic behavior, Int. J. Photoenergy, 2013 (2013) 8 p.
  16. K. Banerjee, S.H. Patil, S. Dasgupta, D.G. Oulkar, P.G. Adsule, Sorption of thiamethoxam in three Indian soils, J. Environ. Sci. Health., Part B, 43 (2008) 151–156.
  17. A. Pena, J.A. Rodríguez-Liébana, M.D. Mingorance, Persistence of two neonicotinoid insecticides in wastewater, and in aqueous solutions of surfactants and dissolved organic matter, Chemosphore, 84 (2011) 464–470.
  18. H. Yang, H. Liu, Z. Hu, J. Liang, H. Pang, H. Yi, Consideration on degradation kinetics and mechanism of thiamethoxam by reactive oxidative species (ROSs) during photocatalytic process, Chem. Eng. J., 245 (2014) 24–33.
  19. V.A. Sakkas, Md.A. Islam, C. Stalikas, T.A. Albanis, Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation, J. Hazard. Mater., 175 (2010) 33–44.
  20. D. Duranoğlu, E. Ngaha, An investigation on thermal and UV regeneration of TiO2/perlite composites, J. Adv. Oxid. Technol., 21 (2018) 248–260.
  21. P.W.M. John, Statistical Design and Analysis of Experiments, SIAM Classics in Applied Mathematics, Philadelphia, 1971.
  22. S.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandao, E.G.P. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, W.N.L. dos Santos, Box-Behnken design: an alternative for the optimization of analytical methods, Anal. Chim. Acta, 597 (2007) 179–186.
  23. M. Hatami, M.C.M. Cuijpers, M.D. Boot, Experimental optimization of the vanes geometry for a variable geometry turbocharger (VGT) using a design of experiment (DoE) approach, Energy Convers. Manage., 106 (2015) 1057–1070.
  24. D. Montgomery, Design and Analysis of Experiments, 8th ed., John Wiley and Sons Inc., New York, 2013, pp. 15–20.
  25. M.A. Behnajady, B. Vahid, N. Modirshahla, M. Shokri, Evaluation of electrical energy per order (EEO) with kinetic modeling on the removal of Malachite Green by US/UV/H2O2 process, Desalination, 249 (2009) 99–103.
  26. J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figuresof- merit for the technical development and application of advanced oxidation processes, J. Adv. Oxd. Technol., 1 (1995) 13–17.
  27. J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solardriven systems, Pure Appl. Chem., 73 (2001) 627–637.
  28. M. Hinojosa-Reyes, S. Arriaga, L.A. Diaz-Torres, V. Rodríguez-González, Gas-phase photocatalytic decomposition of ethylbenzene over perlite granules coated with indium doped TiO2, Chem. Eng. J., 224 (2013) 106–113.
  29. S. Gomez, C.L. Marchena, M.S. Renzini, L. Pizzio, L. Pierella, In situ generated TiO2 over zeolitic supports as reusable photocatalysts for the degradation of dichlorvos, Appl. Catal., B, 162 (2015) 167–173.
  30. K.J. Antony, R.B. Viswanathan, Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile, Indian J. Chem. Sect. A, 48 (2009) 1378–1382.
  31. J. Xiao, Y. Xie, H. Cao, Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation, Chemosphere, 121 (2015) 1–17.
  32. K. Sivagami, R.R. Krishna, T. Swaminathan, Optimization studies on degradation of monocrotophos in an immobilized bead photo reactor using design of experiment, Desal. Wat. Treat., 57 (2016) 28822–28830.
  33. Y. Xu, C.H. Langford, Variation of Langmuir adsorption constant determined for TiO2-photocatalyzed degradation of acetophenone under different light intensity, J. Photochem. Photobiol., A, 133 (2000) 67–71.
  34. G.R.M. Echavia, F. Matzusawa, N. Negishi, Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel, Chemosphere, 76 (2009) 595–600.
  35. M. Abdullah, G.K.C. Low, R.W. Matthews, Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide, J. Phys. Chem., 94 (1990) 6820–6825.