References
- W. Aktar, D. Sengupta, A. Chowdhury, Impact of pesticides use
in agriculture: their benefits and hazards, Interdiscip. Toxicol.,
2 (2009) 1–12.
- K.L. Klarich, N.C. Pflug, E.M. Dewald, M.L. Hladik, D.W. Kolpin,
D.M. Cwiertny, G.H. Lefevre, Occurrence of neonicotinoid
insecticides in finished drinking water and fate during drinking
water treatment, Environ. Sci. Technol. Lett., 4 (2017) 168–173.
- D. Landry, D. Dousset, F. Andreux, Laboratory leaching studies
of oryzalin and diuron through three undisturbed vineyard soil
columns, Chemosphere, 54 (2004) 735–742.
- N.A. Mir, A. Khan, M. Muneer, S. Vijayalakhsmi, Photocatalytic
degradation of a widely used insecticide Thiamethoxam in
aqueous suspension of TiO2: adsorption, kinetics, product analysis
and toxicity assessment, Sci. Total Environ., 458–460 (2013)
388–398.
- S. Malato, J. Blanco, J. Cácere, A.R. Fernández-Alba, A. Agüera,
A. Rodrı́guez, Photocatalytic treatment of water-soluble pesticides
by photo-Fenton and TiO2 using solar energy, Catal. Today,
76 (2002) 209–220.
- S. Mandal, Reaction rate constants of hydroxyl radicals with
micropollutants and their significance in advanced oxidation
processes, J. Adv. Oxid. Technol., 21 (2018) 178–195.
- H. Cao, X. Lin, H. Zhan, H. Zhang, J. Lin, Photocatalytic
degradation kinetics and mechanism of phenobarbital in TiO2
aqueous solution, Chemosphore, 90 (2013) 1514–1519.
- T. Leshuk, D. de Oliveira Livera, K.M. Peru, J.V. Headley,
S. Vijayaraghavan, T. Wong, F. Gu, Photocatalytic degradation
kinetics of naphthenic acids in oil sands process-affected water:
multifactorial determination of significant factors, Chemosphore,
165 (2016) 10–17.
- Q. Zhao, Y. Ge, P. Zuo, D. Shi, S. Jia, Degradation of thiamethoxam
in aqueous solution by ozonation: influencing factors,
intermediates, degradation mechanism and toxicity assessment,
Chemosphore, 146 (2016) 105–112.
- M.A. Vishnuganth, N. Remya, M. Kumar, N. Selvaraju, Photocatalytic
degradation of carbofuran by TiO2-coated activated
carbon: model for kinetic, electrical energy per order and
economic analysis, J. Environ. Manage., 181 (2016) 201–207.
- M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments
in photocatalytic water treatment technology: a review, Water
Res., 44 (2010) 2997–3027.
- S.N. Hosseini, S.M. Borghei, M. Vossoughi, N. Taghavinia,
Immobilization of TiO2 on perlite granules for photocatalytic
degradation of phenol, Appl. Catal., B, 74 (2007) 53–62.
- R. Žabar, T. Komel, J. Fabjan, M.B. Kralj, P. Trebše, Photocatalytic
degradation with immobilised TiO2 of three selected
neonicotinoid insecticides: imidacloprid, thiamethoxam and
clothianidin, Chemosphore, 89 (2012) 293–301.
- D. Duranoğlu, Preparation of TiO2/perlite composites by using
23–1 fractional factorial design, J. Turkish Chem. Soc. Sect. A
Chem., 3 (2016) 299–312.
- M. Giannouri, Th. Kalampaliki, N. Todorova, T. Giannakopoulou,
N. Boukos, D. Petrakis, T. Vaimakis, C. Trapalis, One-step
synthesis of TiO2/perlite composites by flame spray pyrolysis
and their photocatalytic behavior, Int. J. Photoenergy, 2013
(2013) 8 p.
- K. Banerjee, S.H. Patil, S. Dasgupta, D.G. Oulkar, P.G. Adsule,
Sorption of thiamethoxam in three Indian soils, J. Environ. Sci.
Health., Part B, 43 (2008) 151–156.
- A. Pena, J.A. Rodríguez-Liébana, M.D. Mingorance, Persistence
of two neonicotinoid insecticides in wastewater, and in
aqueous solutions of surfactants and dissolved organic matter,
Chemosphore, 84 (2011) 464–470.
- H. Yang, H. Liu, Z. Hu, J. Liang, H. Pang, H. Yi, Consideration
on degradation kinetics and mechanism of thiamethoxam by
reactive oxidative species (ROSs) during photocatalytic process,
Chem. Eng. J., 245 (2014) 24–33.
- V.A. Sakkas, Md.A. Islam, C. Stalikas, T.A. Albanis,
Photocatalytic degradation using design of experiments: a
review and example of the Congo red degradation, J. Hazard.
Mater., 175 (2010) 33–44.
- D. Duranoğlu, E. Ngaha, An investigation on thermal and UV
regeneration of TiO2/perlite composites, J. Adv. Oxid. Technol.,
21 (2018) 248–260.
- P.W.M. John, Statistical Design and Analysis of Experiments,
SIAM Classics in Applied Mathematics, Philadelphia, 1971.
- S.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David,
G.C. Brandao, E.G.P. da Silva, L.A. Portugal, P.S. dos Reis,
A.S. Souza, W.N.L. dos Santos, Box-Behnken design: an
alternative for the optimization of analytical methods, Anal.
Chim. Acta, 597 (2007) 179–186.
- M. Hatami, M.C.M. Cuijpers, M.D. Boot, Experimental
optimization of the vanes geometry for a variable geometry
turbocharger (VGT) using a design of experiment (DoE)
approach, Energy Convers. Manage., 106 (2015) 1057–1070.
- D. Montgomery, Design and Analysis of Experiments, 8th ed.,
John Wiley and Sons Inc., New York, 2013, pp. 15–20.
- M.A. Behnajady, B. Vahid, N. Modirshahla, M. Shokri,
Evaluation of electrical energy per order (EEO) with kinetic
modeling on the removal of Malachite Green by US/UV/H2O2
process, Desalination, 249 (2009) 99–103.
- J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figuresof-
merit for the technical development and application of
advanced oxidation processes, J. Adv. Oxd. Technol., 1 (1995)
13–17.
- J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures-of-merit for the technical development and application of
advanced oxidation technologies for both electric- and solardriven
systems, Pure Appl. Chem., 73 (2001) 627–637.
- M. Hinojosa-Reyes, S. Arriaga, L.A. Diaz-Torres, V. Rodríguez-González, Gas-phase photocatalytic decomposition of ethylbenzene
over perlite granules coated with indium doped TiO2,
Chem. Eng. J., 224 (2013) 106–113.
- S. Gomez, C.L. Marchena, M.S. Renzini, L. Pizzio, L. Pierella,
In situ generated TiO2 over zeolitic supports as reusable
photocatalysts for the degradation of dichlorvos, Appl. Catal.,
B, 162 (2015) 167–173.
- K.J. Antony, R.B. Viswanathan, Effect of surface area,
pore volume and particle size of P25 titania on the phase
transformation of anatase to rutile, Indian J. Chem. Sect. A,
48 (2009) 1378–1382.
- J. Xiao, Y. Xie, H. Cao, Organic pollutants removal in wastewater
by heterogeneous photocatalytic ozonation, Chemosphere,
121 (2015) 1–17.
- K. Sivagami, R.R. Krishna, T. Swaminathan, Optimization
studies on degradation of monocrotophos in an immobilized
bead photo reactor using design of experiment, Desal. Wat.
Treat., 57 (2016) 28822–28830.
- Y. Xu, C.H. Langford, Variation of Langmuir adsorption
constant determined for TiO2-photocatalyzed degradation of
acetophenone under different light intensity, J. Photochem.
Photobiol., A, 133 (2000) 67–71.
- G.R.M. Echavia, F. Matzusawa, N. Negishi, Photocatalytic
degradation of organophosphate and phosphonoglycine
pesticides using TiO2 immobilized on silica gel, Chemosphere,
76 (2009) 595–600.
- M. Abdullah, G.K.C. Low, R.W. Matthews, Effects of common
inorganic anions on rates of photocatalytic oxidation of organic
carbon over illuminated titanium dioxide, J. Phys. Chem.,
94 (1990) 6820–6825.